Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 15(6): 497-509.e3, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38866010

ABSTRACT

Susceptibility to metabolic syndrome (MetS) is dependent on genetics, environment, and gene-by-environment interactions, rendering the study of underlying mechanisms challenging. The majority of experiments in model organisms do not incorporate genetic variation and lack specific evaluation criteria for MetS. Here, we derived a continuous metric, the metabolic health score (MHS), based on standard clinical parameters and defined its molecular signatures in the liver and circulation. In human UK Biobank, the MHS associated with MetS status and was predictive of future disease incidence, even in individuals without MetS. Using quantitative trait locus analyses in mice, we found two MHS-associated genetic loci and replicated them in unrelated mouse populations. Through a prioritization scheme in mice and human genetic data, we identified TNKS and MCPH1 as candidates mediating differences in the MHS. Our findings provide insights into the molecular mechanisms sustaining metabolic health across species and uncover likely regulators. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Metabolic Syndrome , Quantitative Trait Loci , Animals , Mice , Quantitative Trait Loci/genetics , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Humans , Male , Genetic Predisposition to Disease/genetics , Female , Mice, Inbred C57BL , Genome-Wide Association Study/methods , Systems Biology/methods
2.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293129

ABSTRACT

Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.

3.
PLoS Comput Biol ; 19(12): e1011757, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150476

ABSTRACT

The most common reported epidemic time series in epidemiological surveillance are the daily or weekly incidence of new cases, the hospital admission count, the ICU admission count, and the death toll, which played such a prominent role in the struggle to monitor the Covid-19 pandemic. We show that pairs of such curves are related to each other by a generalized renewal equation depending on a smooth time varying delay and a smooth ratio generalizing the reproduction number. Such a functional relation is also explored for pairs of simultaneous curves measuring the same indicator in two neighboring countries. Given two such simultaneous time series, we develop, based on a signal processing approach, an efficient numerical method for computing their time varying delay and ratio curves, and we verify that its results are consistent. Indeed, they experimentally verify symmetry and transitivity requirements and we also show, using realistic simulated data, that the method faithfully recovers time delays and ratios. We discuss several real examples where the method seems to display interpretable time delays and ratios. The proposed method generalizes and unifies many recent related attempts to take advantage of the plurality of these health data across regions or countries and time, providing a better understanding of the relationship between them. An implementation of the method is publicly available at the EpiInvert CRAN package.


Subject(s)
COVID-19 , Pandemics , Humans , Time Factors , COVID-19/epidemiology , Hospitalization , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL