Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352340

ABSTRACT

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition. Significance: PCa that escapes therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic PCa and implicates CDK2 inhibition as novel therapeutic target for this most lethal subtype of PCa.

2.
Nat Cancer ; 2(4): 444-456, 2021 04.
Article in English | MEDLINE | ID: mdl-33899001

ABSTRACT

Prostate cancers are considered to be immunologically 'cold' tumors given the very few patients who respond to checkpoint inhibitor (CPI) therapy. Recently, enrichment of interferon-stimulated genes (ISGs) predicted a favorable response to CPI across various disease sites. The enhancer of zeste homolog-2 (EZH2) is overexpressed in prostate cancer and known to negatively regulate ISGs. In the present study, we demonstrate that EZH2 inhibition in prostate cancer models activates a double-stranded RNA-STING-ISG stress response upregulating genes involved in antigen presentation, Th1 chemokine signaling and interferon response, including programmed cell death protein 1 (PD-L1) that is dependent on STING activation. EZH2 inhibition substantially increased intratumoral trafficking of activated CD8+ T cells and increased M1 tumor-associated macrophages, overall reversing resistance to PD-1 CPI. Our study identifies EZH2 as a potent inhibitor of antitumor immunity and responsiveness to CPI. These data suggest EZH2 inhibition as a therapeutic direction to enhance prostate cancer response to PD-1 CPI.


Subject(s)
Programmed Cell Death 1 Receptor , Prostatic Neoplasms , CD8-Positive T-Lymphocytes , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Interferons/pharmacology , Male , Prostatic Neoplasms/drug therapy , RNA, Double-Stranded
3.
Mol Cancer Res ; 19(7): 1137-1145, 2021 07.
Article in English | MEDLINE | ID: mdl-33863813

ABSTRACT

NF-κB activation has been linked to prostate cancer progression and is commonly observed in castrate-resistant disease. It has been suggested that NF-κB-driven resistance to androgen-deprivation therapy (ADT) in prostate cancer cells may be mediated by aberrant androgen receptor (AR) activation and AR splice variant production. Preventing resistance to ADT may therefore be achieved by using NF-κB inhibitors. However, low oral bioavailability and high toxicity of NF-κB inhibitors is a major challenge for clinical translation. Dimethylaminoparthenolide (DMAPT) is an oral NF-κB inhibitor in clinical development and has already shown favorable pharmacokinetic and pharmacodyanamic data in patients with heme malignancies, including decrease of NF-κB in circulating leuchemic blasts. Here, we report that activation of NF-κB/p65 by castration in mouse and human prostate cancer models resulted in a significant increase in AR variant-7 (AR-V7) expression and modest upregulation of AR. In vivo castration of VCaP-CR tumors resulted in significant upregulation of phosphorylated-p65 and AR-V7, which was attenuated by combination with DMAPT and DMAPT increased the efficacy of AR inhibition. We further demonstrate that the effects of DMAPT-sensitizing prostate cancer cells to castration were dependent on the ability of DMAPT to inhibit phosphorylated-p65 function. IMPLICATIONS: Our study shows that DMAPT, an oral NF-κB inhibitor in clinical development, inhibits phosphorylated-p65 upregulation of AR-V7 and delays prostate cancer castration resistance. This provides rationale for the development of DMAPT as a novel therapeutic strategy to increase durable response in patients receiving AR-targeted therapy.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Drug Resistance, Neoplasm/drug effects , NF-kappa B/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Sesquiterpenes/pharmacology , Administration, Oral , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Male , Mice, Inbred ICR , Mice, SCID , NF-kappa B/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Androgen/metabolism , Sesquiterpenes/administration & dosage
4.
Cancer Prev Res (Phila) ; 13(12): 979-988, 2020 12.
Article in English | MEDLINE | ID: mdl-32917647

ABSTRACT

Chemoprevention trials for prostate cancer by androgen receptor or androgen synthesis inhibition have proven ineffective. Recently, it has been demonstrated that the histone methlytransferase, EZH2 is deregulated in mouse and human high-grade prostatic intraepithelial neoplasia (HG-PIN). Using preclinical mouse and human models of prostate cancer, we demonstrate that genetic and chemical disruption of EZH2 expression and catalytic activity reversed the HG-PIN phenotype. Furthermore, inhibition of EZH2 function was associated with loss of cellular proliferation and induction of Tp53-dependent senescence. Together, these data provide provocative evidence for EZH2 as an actionable therapeutic target toward prevention of prostate cancer.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation , Cellular Senescence , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Prostatic Intraepithelial Neoplasia/prevention & control , Prostatic Neoplasms/prevention & control , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prostatic Intraepithelial Neoplasia/etiology , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
5.
Mol Cancer Res ; 18(8): 1176-1188, 2020 08.
Article in English | MEDLINE | ID: mdl-32461304

ABSTRACT

The increased treatment of metastatic castration-resistant prostate cancer (mCRPC) with second-generation antiandrogen therapies (ADT) has coincided with a greater incidence of lethal, aggressive variant prostate cancer (AVPC) tumors that have lost dependence on androgen receptor (AR) signaling. These AR-independent tumors may also transdifferentiate to express neuroendocrine lineage markers and are termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests kinase signaling may be an important driver of NEPC. To identify targetable kinases in NEPC, we performed global phosphoproteomics comparing several AR-independent to AR-dependent prostate cancer cell lines and identified multiple altered signaling pathways, including enrichment of RET kinase activity in the AR-independent cell lines. Clinical NEPC patient samples and NEPC patient-derived xenografts displayed upregulated RET transcript and RET pathway activity. Genetic knockdown or pharmacologic inhibition of RET kinase in multiple mouse and human models of NEPC dramatically reduced tumor growth and decreased cell viability. Our results suggest that targeting RET in NEPC tumors with high RET expression could be an effective treatment option. Currently, there are limited treatment options for patients with aggressive neuroendocrine prostate cancer and none are curative. IMPLICATIONS: Identification of aberrantly expressed RET kinase as a driver of tumor growth in multiple models of NEPC provides a significant rationale for testing the clinical application of RET inhibitors in patients with AVPC.


Subject(s)
Carcinoma, Neuroendocrine/drug therapy , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Prostatic Neoplasms/drug therapy , Proteomics/methods , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Animals , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mice , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
6.
Radiat Res ; 192(2): 231-239, 2019 08.
Article in English | MEDLINE | ID: mdl-31095445

ABSTRACT

While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically. Male C57BL/6J mice, 16 weeks old, received 20 Gy fractionated doses of X rays (2 Gy daily fractions, five days/week for two weeks) or sham irradiation to the lower abdomen, with or without a prior 20 mGy dose to mimic an image dose. In addition, mice received thrice weekly DMAPT (100 mg/kg by oral gavage) or vehicle control from 15 weeks of age until time of analysis at 6 weeks postirradiation. In the absence of exposure to radiation, there were no significant differences observed in the tissues of DMAPT and vehicle-treated mice (P > 0.05). DMAPT treatment significantly reduced radiation-induced testis weight loss by 60.9% (P < 0.0001), protected against a decrease in the seminiferous tubule diameter by 42.1% (P < 0.0001) and largely preserved testis morphology. Inclusion of the image dose had no significant effect on testis mass, seminiferous tubule diameter or testis morphology. DMAPT reduced radiation-induced fibrosis in the corpus cavernous region of the penis (98.1% reduction, P = 0.009) and in the muscle layer around the bladder (80.1% reduction, P = 0.0001). There was also a trend towards reduced collagen infiltration into the submucosal and muscle layers in the rectum. These results suggest that DMAPT could be useful in providing protection from the radiation-induced side effects of impotence and infertility, urinary incontinence and fecal urgency resulting from prostate cancer radiotherapy. DMAPT is a very well-tolerated drug and can conveniently be delivered orally without strict time windows relative to radiation exposure. Protection of normal tissues by DMAPT could potentially be useful in radiotherapy of other cancer types as well.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Sesquiterpenes/pharmacology , Animals , Body Weight/drug effects , Body Weight/radiation effects , Fibrosis , Male , Mice , Mice, Inbred C57BL , Organ Specificity
7.
In Vivo ; 33(1): 99-108, 2019.
Article in English | MEDLINE | ID: mdl-30587609

ABSTRACT

BACKGROUND/AIM: The hypoglycemic drug metformin (MET) and the anti-epileptic drug valproic acid (VPA) have individually shown anti-tumor effects in prostate cancer in vitro. The present study intended to investigate the efficacy of the combination of MET and VPA in prostate cancer treatment in a pre-clinical xenograft model. MATERIALS AND METHODS: Prostate cancer cell lines (LNCaP and PC-3) were inoculated under the skin of BALB/c nude mice. The mice were treated with 200 µl/ml MET and/or 0.4% (w/v) VPA diluted in drinking water, or with vehicle control, and were monitored until the tumor volume reached 2,000 mm3 Evaluation of toxicity of the drug combination was determined in liver and kidney by histology. RESULTS: In both LNCaP and PC-3 xenografts, MET combined with VPA significantly reduced tumor growth during the first 4 weeks following treatment, and delayed the time-to-tumor volume of 2,000 mm3 by 90 days, as compared to MET or to VPA alone, and to vehicle control. There was no significant difference in total mouse weight, liver or kidney morphology in response to combination treatment (MET+VPA) compared to MET or VPA alone and vehicle control. CONCLUSION: The combination treatment of MET with VPA is more effective at slowing prostate tumor growth in vivo compared to either drug alone, in mouse xenografts. These pre-clinical results support previous in vitro data and also demonstrate the low toxicity of the combination of these drugs, suggesting that this may be a potential new therapy to be investigated in clinical trials for prostate cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Metformin/administration & dosage , Prostatic Neoplasms/drug therapy , Valproic Acid/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Humans , Male , Mice , Prostate/drug effects , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
Adv Exp Med Biol ; 1210: 301-318, 2019.
Article in English | MEDLINE | ID: mdl-31900914

ABSTRACT

The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.


Subject(s)
Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Retinoblastoma Protein/metabolism , Animals , Disease Progression , Humans , Male
9.
Clin Exp Metastasis ; 35(7): 649-661, 2018 10.
Article in English | MEDLINE | ID: mdl-29936575

ABSTRACT

Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin ß1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.


Subject(s)
Ethanol/toxicity , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Sesquiterpenes/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Disease Progression , Drug Interactions , Female , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Metastasis
10.
Mol Cancer Ther ; 16(12): 2689-2700, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28802253

ABSTRACT

We investigated the potential of combining the hypoglycemic drug metformin (MET) and the antiepileptic drug valproic acid (VPA), which act via different biochemical pathways, to provide enhanced antitumor responses in prostate cancer. Prostate cancer cell lines (LNCaP and PC-3), normal prostate epithelial cells (PrEC), and patient-derived prostate tumor explants were treated with MET and/or VPA. Proliferation and apoptosis were assessed. The role of p53 in response to MET + VPA was assessed in cell lines using RNAi in LNCaP (p53+) and ectopic expression of p53 in PC-3 (p53-). The role of the androgen receptor (AR) was investigated using the AR antagonist enzalutamide. The combination of MET and VPA synergistically inhibited proliferation in LNCaP and PC-3, with no significant effect in PrEC. LNCaP, but not PC-3, demonstrated synergistic intrinsic apoptosis in response to MET + VPA. Knockdown of p53 in LNCaP (p53+, AR+) reduced the synergistic apoptotic response as did inhibition of AR. Ectopic expression of p53 in PC-3 (p53-, AR-) increased apoptosis in response to MET + VPA. In patient-derived prostate tumor explants, MET + VPA also induced a significant decrease in proliferation and an increase in apoptosis in tumor cells. In conclusion, we demonstrate that MET + VPA can synergistically kill more prostate cancer cells than either drug alone. The response is dependent on the presence of p53 and AR signaling, which have critical roles in prostate carcinogenesis. Further in vivo/ex vivo preclinical studies are required to determine the relative efficacy of MET + VPA as a potential treatment for prostate cancer. Mol Cancer Ther; 16(12); 2689-700. ©2017 AACR.


Subject(s)
Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Tumor Suppressor Protein p53/metabolism , Valproic Acid/therapeutic use , Apoptosis , Cell Line, Tumor , Drug Synergism , Humans , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Prostatic Neoplasms/pathology , Signal Transduction , Transfection , Valproic Acid/pharmacology
11.
Radiat Res ; 187(5): 501-512, 2017 05.
Article in English | MEDLINE | ID: mdl-28398879

ABSTRACT

Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.


Subject(s)
Chemoradiotherapy/methods , Organ Sparing Treatments/methods , Prostatic Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Sesquiterpenes/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Male , Mice , Mice, Transgenic , Organs at Risk/radiation effects , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/administration & dosage , Treatment Outcome
12.
PLoS One ; 9(3): e93016, 2014.
Article in English | MEDLINE | ID: mdl-24676381

ABSTRACT

The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1), B1 and Intracisternal-A-Particle (IAP) repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen) and a tissue fundamental to the aging process (liver). Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA methylation.


Subject(s)
DNA Methylation/radiation effects , Genes, Intracisternal A-Particle/radiation effects , Long Interspersed Nucleotide Elements/radiation effects , Radiation Dosage , Whole-Body Irradiation , X-Rays , Age Factors , Animals , Female , Liver/metabolism , Liver/radiation effects , Male , Mice , Models, Animal , Repetitive Sequences, Nucleic Acid/radiation effects , Spleen/metabolism , Spleen/radiation effects
13.
Radiat Res ; 181(1): 65-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24397437

ABSTRACT

The effects of ionizing radiation on DNA methylation are of importance due to the role that DNA methylation plays in maintaining genome stability, and the presence of aberrant DNA methylation in many cancers. There is limited evidence that radiation-sensitivity may influence the modulation of DNA methylation by ionizing radiation, resulting in a loss of methylation. The BALB/c, CBA and C57Bl/6 strains are the most commonly utilized mouse strains in radiation research and are classified as radiation sensitive (BALB/c and CBA) or radiation resistant (C57Bl/6). We present here the first direct comparison of changes in repeat element DNA methylation (L1, B1 and Intracisternal A Particle; IAP) over time in these three mouse strains after high-dose radiation exposure. Using a high-resolution melt assay, methylation of the spleen repeat elements was investigated between 1 and 14 days after whole-body irradiation with 1 Gy X rays. Our study demonstrated that rather than a loss of methylation at the elements, all strains exhibited an early increase in L1 methylation one day after irradiation. In the most radiosensitive strain (BALB/c) the increase was also detected at 6 days postirradiation. The radioresistant C57Bl/6 strain exhibited a loss of L1 methylation at 14 days postirradiation. Less extensive changes to the B1 and IAP elements were detected at various time points, and pyrosequencing revealed that the responses of the strains were influenced by sex, with the male BALB/c and CBA mice exhibiting a greater response to the irradiation. The results of our study do not support the hypothesis that the most radiosensitive strains exhibit the greatest loss of repeat element DNA methylation after exposure to high-dose radiation. While the exact mechanism and biological outcome of the changes in DNA methylation observed here are still to be elucidated, this study provides the first evidence that radiation exposure elicits time-dependent changes in the methylation of repeat elements that are influenced by the genetic background, gender and the type of repeat element investigated. Furthermore, it suggest that any induced changes may not be persistent.


Subject(s)
DNA Methylation/radiation effects , Radiation Tolerance/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sex Characteristics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Base Sequence , Female , Genomics , Male , Mice , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity , Spleen/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/radiation effects , Temperature , Time Factors , Whole-Body Irradiation/adverse effects , X-Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...