Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Endocrinol Metab ; 14: 20420188231178373, 2023.
Article in English | MEDLINE | ID: mdl-37323162

ABSTRACT

Many transgender (trans) individuals utilize gender-affirming hormone therapy (GAHT) to promote changes in secondary sex characteristics to affirm their gender. Participation rates of trans people in sport are exceedingly low, yet given high rates of depression and increased cardiovascular risk, the potential benefits of sports participation are great. In this review, we provide an overview of the evidence surrounding the effects of GAHT on multiple performance-related phenotypes, as well as current limitations. Whilst data is clear that there are differences between males and females, there is a lack of quality evidence assessing the impact of GAHT on athletic performance. Twelve months of GAHT leads to testosterone concentrations that align with reference ranges of the affirmed gender. Feminizing GAHT in trans women increases fat mass and decreases lean mass, with opposite effects observed in trans men with masculinizing GAHT. In trans men, an increase in muscle strength and athletic performance is observed. In trans women, muscle strength is shown to decrease or not change following 12 months of GAHT. Haemoglobin, a measure of oxygen transport, changes to that of the affirmed gender within 6 months of GAHT, with very limited data to suggest possible reductions in maximal oxygen uptake as a result of feminizing GAHT. Current limitations of this field include a lack of long-term studies, adequate group comparisons and adjustment for confounding factors (e.g. height and lean body mass), and small sample sizes. There also remains limited data on endurance, cardiac or respiratory function, with further longitudinal studies on GAHT needed to address current limitations and provide more robust data to inform inclusive and fair sporting programmes, policies and guidelines.

2.
J Strength Cond Res ; 36(9): 2509-2514, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-33278272

ABSTRACT

ABSTRACT: Moreland, E, Borisov, OV, Semenova, EA, Larin, AK, Andryushchenko, ON, Andryushchenko, LB, Generozov, EV, Williams, AG, and Ahmetov, II. Polygenic profile of elite strength athletes. J Strength Cond Res 36(9): 2509-2514, 2022-Strength is a heritable trait with unknown polygenic nature. So far, more than 200 DNA polymorphisms associated with strength/power phenotypes have been identified majorly involving nonathletic populations. The aim of the present study was to investigate individually and in combination the association of 217 DNA polymorphisms previously identified as markers for strength/power phenotypes with elite strength athlete status. A case-control study involved 83 Russian professional strength athletes (53 weightlifters, 30 powerlifters), 209 Russian and 503 European controls. Genotyping was conducted using micro-array analysis. Twenty-eight DNA polymorphisms (located near or in ABHD17C , ACTG1 , ADCY3 , ADPGK , ANGPT2 , ARPP21 , BCDIN3D , CRTAC1 , DHODH , GBE1 , IGF1 , IL6 , ITPR1 , KIF1B , LRPPRC , MMS22L , MTHFR , NPIPB6 , PHACTR1 , PLEKHB1 , PPARG , PPARGC1A , R3HDM1 , RASGRF1 , RMC1 , SLC39A8 , TFAP2D , ZKSCAN5 genes) were identified to have an association with strength athlete status. Next, to assess the combined impact of all 28 DNA polymorphisms, all athletes were classified according to the number of "strength" alleles they possessed. All highly elite strength athletes were carriers of at least 22 (up to 34) "strength" alleles, whereas 27.8% of Russian controls had less than 22 "strength" alleles ( p < 0.0001). The proportion of subjects with a high (≥26) number of "strength" alleles was significantly greater in highly elite strength athletes (84.8%) compared with less successful strength athletes (64.9%; odd ratio [OR] = 3.0, p = 0.042), Russian (26.3%; OR = 15.6, p < 0.0001) or European (37.8%; OR = 6.4, p < 0.0001) controls. This is the first study to demonstrate that the likelihood of becoming an elite strength athlete depends on the carriage of a high number of strength-related alleles.


Subject(s)
Athletes , Polymorphism, Genetic , Alleles , Calcium-Binding Proteins , Case-Control Studies , DNA/genetics , Genotype , Humans , Transcription Factor AP-2
3.
Eur J Appl Physiol ; 122(2): 415-423, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34792618

ABSTRACT

PURPOSE: Circulating testosterone levels are a heritable trait with anabolic properties in various tissues, including skeletal muscle. So far, hundreds of single nucleotide polymorphisms (SNPs) associated with testosterone levels have been identified in nonathletic populations. The aim of the present study was to test the association of 822 testosterone-increasing SNPs with muscle-related traits (muscle fiber size, fat-free mass and handgrip strength) and to validate the identified SNPs in independent cohorts of strength and power athletes. METHODS: One hundred and forty-eight physically active individuals (47 females, 101 males) were assessed for cross-sectional area (CSA) of fast-twitch muscle fibers. Significant SNPs were further assessed for fat-free mass and handgrip strength in > 354,000 participants from the UK Biobank cohort. The validation cohorts included Russian elite athletes. RESULTS: From an initial panel of 822 SNPs, we identified five testosterone-increasing alleles (DOCK3 rs77031559 G, ESR1 rs190930099 G, GLIS3 rs34706136 TG, GRAMD1B rs850294 T, TRAIP rs62260729 C) nominally associated (P < 0.05) with CSA of fast-twitch muscle fibers, fat-free mass and handgrip strength. Based on these five SNPs, the number of testosterone-increasing alleles was positively associated with testosterone levels in male athletes (P = 0.048) and greater strength performance in weightlifters (P = 0.017). Moreover, the proportion of participants with ≥ 2 testosterone-increasing alleles was higher in power athletes compared to controls (68.9 vs. 55.6%; P = 0.012). CONCLUSION: Testosterone-related SNPs are associated with muscle fiber size, fat-free mass and strength, which combined can partially contribute to a greater predisposition to strength/power sports.


Subject(s)
Athletes , Genomics , Muscle Strength/genetics , Muscle, Skeletal/metabolism , Polymorphism, Single Nucleotide , Testosterone/metabolism , Adult , Alleles , Female , Hand Strength/physiology , Humans , Male , Muscle Strength/physiology
4.
Genes (Basel) ; 12(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34680894

ABSTRACT

Multiple genetic variants are known to influence athletic performance. These include polymorphisms of the muscle-specific creatine kinase (CKM) gene, which have been associated with endurance and/or power phenotypes. However, independent replication is required to support those findings. The aim of the present study was to determine whether the CKM (rs8111989, c.*800A>G) polymorphism is associated with power athlete status in professional Russian and Lithuanian competitors. Genomic DNA was collected from 693 national and international standard athletes from Russia (n = 458) and Lithuania (n = 235), and 500 healthy non-athlete subjects from Russia (n = 291) and Lithuania (n = 209). Genotyping for the CKM rs8111989 (A/G) polymorphism was performed using PCR or micro-array analysis. Genotype and allele frequencies were compared between all athletes and non-athletes, and between non-athletes and athletes, segregated according to population and sporting discipline (from anaerobic-type events). No statistically significant differences in genotype or allele frequencies were observed between non-athletes and power athletes (strength-, sprint- and speed/strength-oriented) athletes. The present study reports the non-association of the CKM rs8111989 with elite status in athletes from sports in which anaerobic energy pathways determine success.


Subject(s)
Athletic Performance , Creatine Kinase, MM Form/genetics , Polymorphism, Single Nucleotide , Sports , Adult , Female , Gene Frequency , Humans , Male , Young Adult
5.
Genes (Basel) ; 13(1)2021 12 23.
Article in English | MEDLINE | ID: mdl-35052366

ABSTRACT

A recent case-control study identified 28 DNA polymorphisms associated with strength athlete status. However, studies of genotype-phenotype design are required to support those findings. The aim of the present study was to investigate both individually and in combination the association of 28 genetic markers with weightlifting performance in Russian athletes and to replicate the most significant findings in an independent cohort of Japanese athletes. Genomic DNA was collected from 53 elite Russian (31 men and 22 women, 23.3 ± 4.1 years) and 100 sub-elite Japanese (53 men and 47 women, 21.4 ± 4.2 years) weightlifters, and then genotyped using PCR or micro-array analysis. Out of 28 DNA polymorphisms, LRPPRC rs10186876 A, MMS22L rs9320823 T, MTHFR rs1801131 C, and PHACTR1 rs6905419 C alleles positively correlated (p < 0.05) with weightlifting performance (i.e., total lifts in snatch and clean and jerk in official competitions adjusted for sex and body mass) in Russian athletes. Next, using a polygenic approach, we found that carriers of a high (6-8) number of strength-related alleles had better competition results than carriers of a low (0-5) number of strength-related alleles (264.2 (14.7) vs. 239.1 (21.9) points; p = 0.009). These findings were replicated in the study of Japanese athletes. More specifically, Japanese carriers of a high number of strength-related alleles were stronger than carriers of a low number of strength-related alleles (212.9 (22.6) vs. 199.1 (17.2) points; p = 0.0016). In conclusion, we identified four common gene polymorphisms individually or in combination associated with weightlifting performance in athletes from East European and East Asian geographic ancestries.


Subject(s)
Athletic Performance/physiology , Exercise/genetics , Muscle Strength/genetics , Weight Lifting/physiology , Adult , Alleles , Athletes , Case-Control Studies , DNA/genetics , Female , Genotype , Humans , Male , Polymorphism, Genetic/genetics , Russia , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...