Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38502237

ABSTRACT

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Subject(s)
Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
3.
iScience ; 27(3): 109032, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38380252

ABSTRACT

Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRß repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.

4.
AIDS ; 38(3): 299-308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37905996

ABSTRACT

OBJECTIVES: HIV-associated dementia (HAD) is the most severe clinical expression of HIV-mediated neuropathology, and the processes underlying its development remain poorly understood. We aimed to exploit high-dimensional metabolic profiling to gain insights into the pathological mechanisms associated to HAD. DESIGN: In this cross-sectional study, we utilized metabolomics to profile matched cerebrospinal fluid (CSF) and plasma samples of HAD individuals ( n  = 20) compared with neurologically asymptomatic people with HIV (ASYM, n  = 20) and healthy controls (NEG, n  = 20). METHODS: Identification of plasma and CSF metabolites was performed by liquid-chromatography or gas-chromatography following a validated experimental pipeline. The resulting metabolic profiles were analyzed by machine-learning algorithms, and altered pathways were identified by comparison with KEGG pathway database. RESULTS: In CSF, HAD patients displayed an imbalance in glutamine/glutamate ratio, decreased levels of isocitrate and arginine, and increased oxidative stress when compared with ASYM or NEG. These changes were confirmed in matched plasma samples, which in addition revealed an accumulation of eicosanoids and unsaturated fatty acids in HAD individuals. Pathway analysis in both biological fluids suggested that alterations in several metabolic processes, including protein biosynthesis, glutamate and arginine metabolism, and energy metabolism, in association to a perturbed eicosanoid metabolism in plasma, may represent the metabolic signature associated to HAD. CONCLUSION: These findings show that HAD may be associated with metabolic modifications in CSF and plasma. These preliminary data may be useful to identify novel metabolic biomarkers and therapeutic targets in HIV-associated neurological impairment.


Subject(s)
AIDS Dementia Complex , HIV Infections , Humans , Arginine/metabolism , Glutamic Acid/metabolism , Glutamic Acid/therapeutic use , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/drug therapy , Metabolome , Metabolomics/methods , Energy Metabolism , Biomarkers
5.
EMBO Mol Med ; 15(11): e17810, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37807875

ABSTRACT

One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Humans , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Tretinoin/pharmacology , Tretinoin/metabolism , Tretinoin/therapeutic use , Gene Expression Regulation , Cell Differentiation , Leukemia, Promyelocytic, Acute/drug therapy
6.
Nucleic Acids Res ; 51(20): 11024-11039, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37823593

ABSTRACT

The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.


Subject(s)
Chromatin , Triple Negative Breast Neoplasms , Humans , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor
7.
Sci Rep ; 13(1): 807, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646776

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition with onset in early childhood, still diagnosed only through clinical observation due to the lack of laboratory biomarkers. Early detection strategies would be especially useful in screening high-risk newborn siblings of children already diagnosed with ASD. We performed RNA sequencing on peripheral blood, comparing 27 pairs of ASD children vs their sex- and age-matched unaffected siblings. Differential gene expression profiling, performed applying an unpaired model found two immune genes, EGR1 and IGKV3D-15, significantly upregulated in ASD patients (both p adj = 0.037). Weighted gene correlation network analysis identified 18 co-expressed modules. One of these modules was downregulated among autistic individuals (p = 0.035) and a ROC curve using its eigengene values yielded an AUC of 0.62. Genes in this module are primarily involved in transcriptional control and its hub gene, RACK1, encodes for a signaling protein critical for neurodevelopment and innate immunity, whose expression is influenced by various hormones and known "endocrine disruptors". These results indicate that transcriptomic biomarkers can contribute to the sensitivity of an intra-familial multimarker panel for ASD and provide further evidence that neurodevelopment, innate immunity and transcriptional regulation are key to ASD pathogenesis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Infant, Newborn , Humans , Child, Preschool , Autism Spectrum Disorder/diagnosis , Siblings , Autistic Disorder/genetics , Biomarkers , Sequence Analysis, RNA
8.
Front Immunol ; 13: 1026416, 2022.
Article in English | MEDLINE | ID: mdl-36389771

ABSTRACT

An unbiased and replicable profiling of type 1 diabetes (T1D)-specific circulating immunome at disease onset has yet to be identified due to experimental and patient selection limitations. Multicolor flow cytometry was performed on whole blood from a pediatric cohort of 107 patients with new-onset T1D, 85 relatives of T1D patients with 0-1 islet autoantibodies (pre-T1D_LR), 58 patients with celiac disease or autoimmune thyroiditis (CD_THY) and 76 healthy controls (HC). Unsupervised clustering of flow cytometry data, validated by a semi-automated gating strategy, confirmed previous findings showing selective increase of naïve CD4 T cells and plasmacytoid DCs, and revealed a decrease in CD56brightNK cells in T1D. Furthermore, a non-selective decrease of CD3+CD56+ regulatory T cells was observed in T1D. The frequency of naïve CD4 T cells at disease onset was associated with partial remission, while it was found unaltered in the pre-symptomatic stages of the disease. Thanks to a broad cohort of pediatric individuals and the implementation of unbiased approaches for the analysis of flow cytometry data, here we determined the circulating immune fingerprint of newly diagnosed pediatric T1D and provide a reference dataset to be exploited for validation or discovery purposes to unravel the pathogenesis of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Flow Cytometry , T-Lymphocytes, Regulatory , Autoantibodies , Killer Cells, Natural
9.
BMC Bioinformatics ; 23(1): 151, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35473556

ABSTRACT

BACKGROUND: Histone Mark Modifications (HMs) are crucial actors in gene regulation, as they actively remodel chromatin to modulate transcriptional activity: aberrant combinatorial patterns of HMs have been connected with several diseases, including cancer. HMs are, however, reversible modifications: understanding their role in disease would allow the design of 'epigenetic drugs' for specific, non-invasive treatments. Standard statistical techniques were not entirely successful in extracting representative features from raw HM signals over gene locations. On the other hand, deep learning approaches allow for effective automatic feature extraction, but at the expense of model interpretation. RESULTS: Here, we propose ShallowChrome, a novel computational pipeline to model transcriptional regulation via HMs in both an accurate and interpretable way. We attain state-of-the-art results on the binary classification of gene transcriptional states over 56 cell-types from the REMC database, largely outperforming recent deep learning approaches. We interpret our models by extracting insightful gene-specific regulative patterns, and we analyse them for the specific case of the PAX5 gene over three differentiated blood cell lines. Finally, we compare the patterns we obtained with the characteristic emission patterns of ChromHMM, and show that ShallowChrome is able to coherently rank groups of chromatin states w.r.t. their transcriptional activity. CONCLUSIONS: In this work we demonstrate that it is possible to model HM-modulated gene expression regulation in a highly accurate, yet interpretable way. Our feature extraction algorithm leverages on data downstream the identification of enriched regions to retrieve gene-wise, statistically significant and dynamically located features for each HM. These features are highly predictive of gene transcriptional state, and allow for accurate modeling by computationally efficient logistic regression models. These models allow a direct inspection and a rigorous interpretation, helping to formulate quantifiable hypotheses.


Subject(s)
Histone Code , Histones , Chromatin , Gene Expression , Histones/metabolism , Protein Processing, Post-Translational
10.
Cancers (Basel) ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267633

ABSTRACT

Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.

11.
Transl Androl Urol ; 11(2): 149-158, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35280651

ABSTRACT

Background: The combination of radiomic and transcriptomic approaches for patients diagnosed with small clear-cell renal cell carcinoma (ccRCC) might improve decision making. In this pilot and methodological study, we investigate whether imaging features obtained from computed tomography (CT) may correlate with gene expression patterns in ccRCC patients. Methods: Samples from 6 patients who underwent partial nephrectomy for unilateral non-metastatic ccRCC were included in this pilot cohort. Transcriptomic analysis was conducted through RNA-sequencing on tumor samples, while radiologic features were obtained from pre-operative 4-phase contrast-enhanced CT. To evaluate the heterogeneity of the transcriptome, after a 1,000 re-sampling via bootstrapping, a first Principal Component Analyses (PCA) were fitted with all transcripts and a second ones with transcripts deriving from a list of 369 genes known to be associated with ccRCC from The Cancer Genome Atlas (TCGA). Significant pathways in each Principal Components for the 50 genes with the highest loadings absolute values were assessed with pathways enrichment analysis. In addition, Pearson's correlation coefficients among radiomic features themselves and between radiomic features and transcripts expression values were computed. Results: The transcriptomes of the analysed samples showed a high grade of heterogeneity. However, we found four radiogenomic patterns, in which the correlation between radiomic features and transcripts were statistically significant. Conclusions: We showed that radiogenomic approach is feasible, however its clinical meaning should be further investigated.

12.
Neurosci Biobehav Rev ; 135: 104552, 2022 04.
Article in English | MEDLINE | ID: mdl-35120970

ABSTRACT

Applying machine learning (ML) to objective markers may overcome prognosis uncertainty due to the subjective nature of the diagnosis of bipolar disorder (BD). This PRISMA-compliant meta-analysis provides new systematic evidence of the BD classification accuracy reached by different markers and ML algorithms. We focused on neuroimaging, electrophysiological techniques, peripheral biomarkers, genetic data, neuropsychological or clinical measures, and multimodal approaches. PubMed, Embase and Scopus were searched through 3rd December 2020. Meta-analyses were performed using random-effect models. Overall, 81 studies were included in this systematic review and 65 in the meta-analysis (11,336 participants, 3903 BD). The overall pooled classification accuracy was 0.77 (95%CI[0.75;0.80]). Despite subgroup analyses for diagnostic comparison group, psychiatric disorders, marker, ML algorithm, and validation procedure were not significant, linear discriminant analysis significantly outperformed support vector machine for peripheral biomarkers (p = 0.03). Sample size was inversely related to accuracy. Evidence of publication bias was detected. Ultimately, although ML reached a high accuracy in differentiating BD from other psychiatric disorders, best practices in methodology are needed for the advancement of future studies.


Subject(s)
Bipolar Disorder , Algorithms , Biomarkers , Bipolar Disorder/diagnosis , Humans , Machine Learning , Neuroimaging
13.
EMBO J ; 40(10): e105464, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33792944

ABSTRACT

Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.


Subject(s)
DNA/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Base Sequence/genetics , Base Sequence/physiology , Binding Sites , DNA/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics
14.
Radiol Med ; 126(3): 498-502, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33165767

ABSTRACT

PURPOSE: In overwhelmed emergency departments (EDs) facing COVID-19 outbreak, a swift diagnosis is imperative. CT role was widely debated for its limited specificity. Here we report the diagnostic role of CT in two EDs in Lombardy, epicenter of Italian outbreak. MATERIAL AND METHODS: Admitting chest CT from 142 consecutive patients with suspected COVID-19 were retrospectively analyzed. CT scans were classified in "highly likely," "likely," and "unlikely" COVID-19 pneumonia according to the presence of typical, indeterminate, and atypical findings, or "negative" in the absence of findings, or "alternative diagnosis" when a different diagnosis was found. Nasopharyngeal swab results, turnaround time, and time to positive results were collected. CT diagnostic performances were assessed considering RT-PCR as reference standard. RESULTS: Most of cases (96/142, 68%) were classified as "highly likely" COVID-19 pneumonia. Ten (7%) and seven (5%) patients were classified as "likely" and "unlikely" COVID-19 pneumonia, respectively. In 21 (15%) patients a differential diagnosis was provided, including typical pneumonia, pulmonary edema, neoplasia, and pulmonary embolism. CT was negative in 8/142 (6%) patients. Mean turnaround time for the first COVID-19 RT-PCR was 30 ± 13 h. CT diagnostic accuracy in respect of the first test swab was 79% and increased to 91.5% after repeated swabs and/or BAL, for 18 false-negative first swab. CT performance was good with 76% specificity, 99% sensitivity, 90% positive predictive value and 97% negative predictive value. CONCLUSION: Chest CT was useful to streamline patients' triage while waiting for RT-PCR in the ED, supporting the clinical suspicion of COVID-19 or providing alternative diagnosis.


Subject(s)
COVID-19/diagnostic imaging , Emergency Service, Hospital , Lung/diagnostic imaging , Tomography, X-Ray Computed , Aged , Female , Humans , Italy , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity , Triage
15.
EMBO Rep ; 20(9): e47987, 2019 09.
Article in English | MEDLINE | ID: mdl-31334602

ABSTRACT

Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.


Subject(s)
B-Lymphocytes/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Chromatin Immunoprecipitation , Female , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Immunoblotting , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic/genetics
17.
Sci Rep ; 7(1): 15573, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138456

ABSTRACT

Transcriptional regulators are crucial in adipocyte differentiation. We now show that the homeodomain-containing transcription factor Prep1 is a repressor of adipogenic differentiation since its down-regulation (DR) in both ex vivo bone marrow-derived mesenchymal stromal cells (MSC) and in vitro 3T3-L1 preadipocytes significantly increases their adipogenic differentiation ability. Prep1 acts at a stage preceding the activation of the differentiation machinery because its DR makes cells more prone to adipogenic differentiation even in the absence of the adipogenic inducers. Prep1 DR expands the DNA binding landscape of C/EBPß (CCAAT enhancer binding protein ß) without affecting its expression or activation. The data indicate that Prep1 normally acts by restricting DNA binding of transcription factors to adipogenic enhancers, in particular C/EBPß.


Subject(s)
Adipogenesis/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Differentiation/genetics , Homeodomain Proteins/genetics , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Bone Marrow Cells/cytology , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/pathology , Mice
18.
Genome Res ; 27(10): 1658-1664, 2017 10.
Article in English | MEDLINE | ID: mdl-28904013

ABSTRACT

Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.


Subject(s)
Promoter Regions, Genetic/physiology , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism , RNA Precursors/biosynthesis , Transcription, Genetic/physiology , Animals , Cell Line, Transformed , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II/genetics , RNA Precursors/genetics , RNA Processing, Post-Transcriptional/physiology , Ubiquitin-Protein Ligases
19.
Cell Death Dis ; 8(7): e2956, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28749464

ABSTRACT

The cohesin complex is mutated in cancer and in a number of rare syndromes collectively known as Cohesinopathies. In the latter case, cohesin deficiencies have been linked to transcriptional alterations affecting Myc and its target genes. Here, we set out to understand to what extent the role of cohesins in controlling cell cycle is dependent on Myc expression and activity. Inactivation of the cohesin complex by silencing the RAD21 subunit led to cell cycle arrest due to both transcriptional impairment of Myc target genes and alterations of replication forks, which were fewer and preferentially unidirectional. Ectopic activation of Myc in RAD21 depleted cells rescued Myc-dependent transcription and promoted S-phase entry but failed to sustain S-phase progression due to a strong replicative stress response, which was associated to a robust DNA damage response, DNA damage checkpoint activation and synthetic lethality. Thus, the cohesin complex is dispensable for Myc-dependent transcription but essential to prevent Myc-induced replicative stress. This suggests the presence of a feed-forward regulatory loop where cohesins by regulating Myc level control S-phase entry and prevent replicative stress.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Chromosomal Proteins, Non-Histone/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Computational Biology , DNA Replication/genetics , DNA Replication/physiology , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoblotting , Proto-Oncogene Proteins c-myc/genetics , Cohesins
20.
Bioinformatics ; 33(16): 2570-2572, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28398543

ABSTRACT

SUMMARY: Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) generates local accumulations of sequencing reads on the genome ("peaks"), which correspond to specific protein-DNA interactions or chromatin modifications. Peaks are detected by considering their total area above a background signal, usually neglecting their shapes, which instead may convey additional biological information. We present FunChIP, an R/Bioconductor package for clustering peaks according to a functional representation of their shapes: after approximating their profiles with cubic B-splines, FunChIP minimizes their functional distance and classifies the peaks applying a k-mean alignment and clustering algorithm. The whole pipeline is user-friendly and provides visualization functions for a quick inspection of the results. An application to the transcription factor Myc in 3T9 murine fibroblasts shows that clusters of peaks with different shapes are associated with different genomic locations and different transcriptional regulatory activity. AVAILABILITY AND IMPLEMENTATION: The package is implemented in R and is available under Artistic Licence 2.0 from the Bioconductor website (http://bioconductor.org/packages/FunChIP). CONTACT: marco.morelli@iit.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Chromatin Immunoprecipitation/methods , Genomics/methods , Software , Algorithms , Animals , Cluster Analysis , Fibroblasts/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...