Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Inflamm Res ; 73(1): 111-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38087076

ABSTRACT

Over the years, the importance of the epithelium in the assessment of allergic sensitization and development of allergic diseases has increased. Sensitization to allergens appears to be influenced by genetic and external environmental factors. However, not all subjects exposed to environmental factors that damage epithelial cells suffer from allergic diseases. On this basis, identifying the signaling pathways that characterize the different phenotypes and endotypes of allergy is of high priority for a successful personalized therapy. Ecto-5'-nucleotidase/CD73 is a membrane-bound enzyme responsible for extracellular adenosine accumulation from AMP derived, in turn, from the hydrolysis of extracellular ATP. Current knowledge suggests that CD73 expression and enzymatic activity at epithelial barriers would be of fundamental importance to control the first defense against allergens, by preserving both physical and immunological epithelial barrier functions. Here, we highlight evidence for a crucial role of CD73 in features of allergic sensitization and the potential of this enzyme as prognostic marker and target of therapeutic intervention.


Subject(s)
5'-Nucleotidase , Adenosine , Humans , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Prognosis , Adenosine/metabolism , Adenosine Monophosphate
2.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446232

ABSTRACT

Tissue inflammation is a dynamic process that develops step by step, in response to an injury, to preserve tissue integrity [...].


Subject(s)
Inflammation , Signal Transduction , Humans , Inflammation/metabolism
3.
Biomed Pharmacother ; 165: 115225, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517292

ABSTRACT

CD73 is the key enzyme in the generation of extracellular adenosine, a mediator involved in tumor progression, tumor immune escape and resistance to anti-cancer therapeutics. Microenvironmental conditions influence the expression of CD73 in tumor cells. However how CD73 expression and activity is regulated in a stress condition of lower nutrient availability are largely unknown. Our results indicate that serum starvation leads to a marked up-regulation of CD73 expression on A375 melanoma cells in a time-dependent manner. The cell-surface expression of CD73 is associated with an increased release of TGF-ß1 by starved cells. Blockade of TGF-ß1 receptors or TGFß/SMAD3 signaling pathway significantly reduce the expression of CD73 induced by starvation. Treatment of cells with rTGF-ß1 up-regulates the expression of CD73 in a concentration-dependent manner, confirming the role of this pathway in regulating CD73 in melanoma A375 cells. The increased expression of CD73 is associated with enhanced AMPase activity, which is selectively reduced by inhibitors of CD73 activity, APCP and PSB-12489. Pharmacological blockade of CD73 significantly inhibits invasion of melanoma cells in a transwell system. Furthermore, using multiplex immunofluorescence imaging we found that, within human melanoma metastases, tumor cells at the dedifferentiated stage show the highest CD73 protein expression. In summary, our data provide new insights into the mechanism regulating the expression/activity of CD73 in melanoma cells in a condition of lower availability of nutrients, which is a common feature of the tumor microenvironment. Within human metastatic melanoma tissues elevated protein expression of CD73 is associated with an invasive-like phenotype.


Subject(s)
5'-Nucleotidase , Melanoma , Transforming Growth Factor beta1 , Humans , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Cell Line, Tumor , Melanoma/pathology , Nutrients , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment
4.
Int J Pharm ; 641: 123093, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37268029

ABSTRACT

Bone repair and tissue-engineering (BTE) approaches require novel biomaterials to produce scaffolds with required structural and biological characteristics and enhanced performances with respect to those currently available. In this study, PCL/INU-PLA hybrid biomaterial was prepared by blending of the aliphatic polyester poly(ε-caprolactone) (PCL) with the amphiphilic graft copolymer Inulin-g-poly(D,L)lactide (INU-PLA) synthetized from biodegradable inulin (INU) and poly(lactic acid) (PLA). The hybrid material was suitable to be processed using fused filament fabrication 3D printing (FFF-3DP) technique rendering macroporous scaffolds. PCL and INU-PLA were firstly blended as thin films through solvent-casting method, and then extruded by hot melt extrusion (HME) in form of filaments processable by FFF-3DP. The physicochemical characterization of the hybrid new material showed high homogeneity, improved surface wettability/hydrophilicity as compared to PCL alone, and right thermal properties for FFF process. The 3D printed scaffolds exhibited dimensional and structural parameters very close to those of the digital model, and mechanical performances compatible with the human trabecular bone. In addition, in comparison to PCL, hybrid scaffolds showed an enhancement of surface properties, swelling ability, and in vitro biodegradation rate. In vitro biocompatibility screening through hemolysis assay, LDH cytotoxicity test on human fibroblasts, CCK-8 cell viability, and osteogenic activity (ALP evaluation) assays on human mesenchymal stem cells showed favorable results.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Inulin , Biocompatible Materials/chemistry , Polyesters/chemistry , Printing, Three-Dimensional
5.
Cancers (Basel) ; 14(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230687

ABSTRACT

Among solid tumors, pancreatic cancer (PC) remains a leading cause of death. In PC, the protein ANXA1 has been identified as an oncogenic factor acting in an autocrine/paracrine way, and also as a component of tumor-deriving extracellular vesicles. Here, we proposed the experimental protocol to obtain spheroids from the two cell lines, wild-type (WT) and Annexin A1 (ANXA1) knock-out (KO) MIA PaCa-2, this last previously obtained through CRISPR/Cas9 genome editing system. The use of three-dimensional (3D) models, like spheroids, can be useful to mimic tumor characteristics and for preclinical chemo-sensitivity studies. By using PC spheroids, we have assessed the activity of intracellular and extracellular ANXA1. Indeed, we have proved that the intracellular protein influences in vitro tumor development and growth by spheroids analysis, in addition to defining the modification about cell protein pattern in ANXA1 KO model compared to the WT one. Moreover, we have tested the response to FOLFIRINOX chemotherapy regimen whose cytostatic effect appeared notably increased in ANXA1 KO spheroids. Additionally, this study has highlighted that the extracellular ANXA1 action is strengthened through the EVs supporting spheroids growth and resistance to drug treatment, mainly affecting tumor progression. Thus, our data interestingly suggest the relevance of ANXA1 as a potential therapeutic PC marker.

6.
Front Cell Dev Biol ; 10: 876510, 2022.
Article in English | MEDLINE | ID: mdl-35663396

ABSTRACT

ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-ß) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells' A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-ß levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.

7.
Sci Rep ; 12(1): 11041, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773320

ABSTRACT

Skin wound healing requires accurate therapeutic topical managements to accelerate tissue regeneration. Here, for the first time, we found that the association mesoglycan/VEGF has a strong pro-healing activity. In detail, this combination induces angiogenesis in human endothelial cells promoting in turn fibroblasts recruitment. These ones acquire a notable ability to invade the matrigel coating and to secrete an active form of metalloproteinase 2 in presence of endothelial cells treated with mesoglycan/VEGF. Next, by creating intrascapular lesions on the back of C57Bl6 mice, we observed that the topical treatments with the mesoglycan/VEGF promotes the closure of wounds more than the single substances beside the control represented by a saline solution. As revealed by eosin/hematoxylin staining of mice skin biopsies, treatment with the combination mesoglycan/VEGF allows the formation of a well-structured matrix with a significant number of new vessels. Immunofluorescence analyses have revealed the presence of endothelial cells at the closed region of wounds, as evaluated by CD31, VE-cadherin and fibronectin staining and of activated fibroblasts assessed by vimentin, col1A and FAP1α. These results encourage defining the association mesoglycan/VEGF to activate endothelial and fibroblast cell components in skin wound healing promoting the creation of new vessels and the deposition of granulation tissue.


Subject(s)
Endothelial Cells , Glycosaminoglycans , Skin Abnormalities , Soft Tissue Injuries , Vascular Endothelial Growth Factor A , Animals , Cell Movement/drug effects , Cell Movement/physiology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Fibroblasts/drug effects , Fibroblasts/physiology , Glycosaminoglycans/pharmacology , Matrix Metalloproteinase 2 , Mice , Mice, Inbred C57BL , Skin/drug effects , Skin Abnormalities/drug therapy , Soft Tissue Injuries/drug therapy , Vascular Endothelial Growth Factor A/pharmacology
8.
Biomolecules ; 12(5)2022 05 13.
Article in English | MEDLINE | ID: mdl-35625624

ABSTRACT

Ecto-5'-nucleotidase (CD73), the ectoenzyme that together with CD39 is responsible for extracellular ATP hydrolysis and adenosine accumulation, regulates immune/inflammatory processes by controlling innate and acquired immunity cell functions. We previously demonstrated that CD73 is required for the assessment of a controlled allergic sensitization, in mice. Here, we evaluated the response to aerosolized allergen of female-sensitized mice lacking CD73 in comparison with their wild type counterpart. Results obtained show, in mice lacking CD73, the absence of airway hyperreactivity in response to an allergen challenge, paralleled by reduced airway CD23+B cells and IL4+T cells pulmonary accumulation together with reduced mast cells accumulation and degranulation. Our findings indicate CD73 as a potential therapeutic target for allergic asthma.


Subject(s)
5'-Nucleotidase , Allergens , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Animals , Female , Lung/metabolism , Mice , Mice, Knockout
9.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35273100

ABSTRACT

BACKGROUND: CD73 is an ectonucleotidase producing the immunosuppressor mediator adenosine. Elevated levels of circulating CD73 in patients with cancer have been associated with disease progression and poor response to immunotherapy. Immunosuppressive pathways associated with exosomes can affect T-cell function and the therapeutic efficacy of anti-programmed cell-death protein 1 (anti-PD-1) therapy. Here, we conducted a retrospective pilot study to evaluate levels of exosomal CD73 before and early during treatment with anti-PD-1 agents in patients with melanoma and its potential contribution to affect T-cell functions and to influence the clinical outcomes of anti-PD-1 monotherapy. METHODS: Exosomes were isolated by mini size exclusion chromatography from serum of patients with melanoma (n=41) receiving nivolumab or pembrolizumab monotherapy. Expression of CD73 and programmed death-ligand 1 (PD-L1) were evaluated on exosomes enriched for CD63 by on-bead flow cytometry. The CD73 AMPase activity was evaluated by mass spectrometry, also in the presence of selective inhibitors of CD73. Interferon (IFN)-γ production and granzyme B expression were measured in CD3/28 activated T cells incubated with exosomes in presence of the CD73 substrate AMP. Levels of CD73 and PD-L1 on exosomes were correlated with therapy response. Exosomes isolated from healthy subjects were used as control. RESULTS: Isolated exosomes carried CD73 on their surface, which is enzymatically active in producing adenosine. Incubation of exosomes with CD3/28 activated T cells in the presence of AMP resulted in a significant reduction of IFN-γ release, which was reversed by the CD73 inhibitor APCP or by the selective A2A adenosine receptor antagonist ZM241385. Expression levels of exosomal CD73 from serum of patients with melanoma were not significantly different from those in healthy subjects. Early on-treatment, expression levels of both CD73 and PD-L1 on exosomes isolated from patients receiving pembrolizumab or nivolumab monotherapy were significantly increased compared with baseline. Early during therapy exosomal PD-L1 increased in responders, while exosomal CD73 resulted significantly increased in non-responders. CONCLUSIONS: CD73 expressed on exosomes from serum of patients with melanoma produces adenosine and contributes to suppress T-cell functions. Early on-treatment, elevated expression levels of exosomal CD73 might affect the response to anti-PD-1 agents in patients with melanoma who failed to respond to therapy.


Subject(s)
B7-H1 Antigen , Melanoma , 5'-Nucleotidase , Adenosine , Adenosine Monophosphate/therapeutic use , B7-H1 Antigen/metabolism , GPI-Linked Proteins , Humans , Lymphocytes/metabolism , Melanoma/drug therapy , Nivolumab/pharmacology , Nivolumab/therapeutic use , Pilot Projects , Retrospective Studies
10.
Biomolecules ; 11(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34944403

ABSTRACT

The pyrazolyl-urea Gege3 molecule has shown interesting antiangiogenic effects in the tumor contest. Here, we have studied the role of this compound as interfering with endothelial cells activation in response to the paracrine effects of annexin A1 (ANXA1), known to be involved in promoting tumor progression. ANXA1 has been analyzed in the extracellular environment once secreted through microvesicles (EVs) by pancreatic cancer (PC) cells. Particularly, Gege3 has been able to notably prevent the effects of Ac2-26, the ANXA1 mimetic peptide, and of PC-derived EVs on endothelial cells motility, angiogenesis, and calcium release. Furthermore, this compound also inhibited the translocation of ANXA1 to the plasma membrane, otherwise induced by the same ANXA1-dependent extracellular stimuli. Moreover, these effects have been mediated by the indirect inhibition of protein kinase Cα (PKCα), which generally promotes the phosphorylation of ANXA1 on serine 27. Indeed, by the subtraction of intracellular calcium levels, the pathway triggered by PKCα underwent a strong inhibition leading to the following impediment to the ANXA1 localization at the plasma membrane, as revealed by confocal and cytofluorimetry analysis. Thus, Gege3 appeared an attractive molecule able to prevent the paracrine effects of PC cells deriving ANXA1 in the tumor microenvironment.


Subject(s)
Annexin A1/metabolism , Down-Regulation , Extracellular Vesicles/metabolism , Pancreatic Neoplasms/metabolism , Small Molecule Libraries/pharmacology , Urea/chemistry , Annexin A1/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement/drug effects , Extracellular Vesicles/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Pancreatic Neoplasms/drug therapy , Paracrine Communication/drug effects , Peptides/pharmacology , Phosphorylation/drug effects , Protein Transport/drug effects , Small Molecule Libraries/chemistry , Tumor Microenvironment/drug effects
11.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681678

ABSTRACT

The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.


Subject(s)
Annexin A1/metabolism , Extracellular Vesicles/metabolism , Macrophages/immunology , Neovascularization, Pathologic , Pancreatic Neoplasms/metabolism , Tumor Microenvironment , Animals , Annexin A1/immunology , Cell Line, Tumor , Endothelial Cells/physiology , Fibroblasts/physiology , Humans , Macrophage Activation , Mice , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/physiopathology
12.
Cells ; 10(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34571872

ABSTRACT

There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Inflammation/complications , Thrombosis/complications , Animals , Humans , Inflammation/blood , Nucleotides/metabolism , Platelet Activation , Signal Transduction , Thrombosis/blood
13.
Adv Exp Med Biol ; 1270: 145-167, 2021.
Article in English | MEDLINE | ID: mdl-33123998

ABSTRACT

Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.


Subject(s)
Adenosine/metabolism , Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment , 5'-Nucleotidase/genetics , Humans , Receptors, G-Protein-Coupled/metabolism
14.
Front Pharmacol ; 11: 589343, 2020.
Article in English | MEDLINE | ID: mdl-33328996

ABSTRACT

The airways are a target tissue of type I allergies and atopy is the main etiological factor of bronchial asthma. A predisposition to allergy and individual response to allergens are dependent upon environmental and host factors. Early studies performed to clarify the role of extracellular adenosine in the airways highlighted the importance of adenosine-generating enzymes CD73, together with CD39, as an innate protection system against lung injury. In experimental animals, deletion of CD73 has been associated with immune and autoimmune diseases. Our experiments have been performed to investigate the role of CD73 in the assessment of allergic airway inflammation following sensitization. We found that in CD73-/- mice sensitization, induced by subcutaneous ovalbumin (OVA) administration, increased signs of airway inflammation and atopy developed, characterized by high IgE plasma levels and increased pulmonary cytokines, reduced frequency of lung CD4+CD25+Foxp3+ T cells, but without bronchial hyperreactivity, compared to sensitized wild type mice. Our results provide evidence that the lack of CD73 causes an uncontrolled allergic sensitization, suggesting that CD73 is a key molecule at the interface between innate and adaptive immune response. The knowledge of host immune factors controlling allergic sensitization is of crucial importance and might help to find preventive interventions that could act before an allergy develops.

15.
16.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33361405

ABSTRACT

BACKGROUND: Inhibitors of immune checkpoint programmed cell death protein 1 (PD-1) receptor on T cells have shown remarkable clinical outcomes in metastatic melanoma. However, most patients are resistant to therapy. Production of extracellular adenosine, via CD73-mediated catabolism of AMP, contributes to suppress T-cell-mediated responses against cancer. In this study, we analyzed the expression and activity of soluble CD73 in sera of patients with melanoma undergoing anti-PD-1± cytotoxic T-lymphocyte-associated antigen 4 therapy. METHODS: Soluble CD73 expression and activity were retrospectively analyzed in serum of a total of 546 patients with melanoma from different centers before starting treatment (baseline) with anti-PD-1 agents, nivolumab or pembrolizumab, and compared with those of 96 healthy subjects. The CD73 activity was correlated with therapy response and survival of patients. RESULTS: Patients with melanoma show significantly higher CD73 activity and expression than those observed in healthy donors (p<0.0001). Elevated pretreatment levels of CD73 activity were associated with non-response to therapy with nivolumab or pembrolizumab. During treatment, levels of soluble CD73 activity remain unchanged from baseline and still stratify clinical responders from non-responders. High levels of serum CD73 enzymatic activity associate with reduced overall survival (OS; HR=1.36, 95% CI 1.03 to 1.78; p=0.03) as well as progression-free survival (PFS; HR=1.42, 95% CI 1.13 to 1.79, p=0.003). Further, the multivariate Cox regression analysis indicates that serum CD73 activity is an independent prognostic factor besides serum lactate dehydrogenase levels and the presence of brain metastases for both OS (p=0.009) and PFS (p=0.001). CONCLUSION: Our data indicate the relevance of serum CD73 in patients with advanced melanoma receiving anti-PD-1 therapy and support further investigation on targeting CD73 in combination with anti-PD-1 antibodies.


Subject(s)
5'-Nucleotidase/blood , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/blood , Melanoma/drug therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Female , GPI-Linked Proteins/blood , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Young Adult
17.
J Transl Med ; 18(1): 121, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32160899

ABSTRACT

BACKGROUND: PD-1 blocking agents, such as nivolumab, have demonstrated clear anti-tumor effects and clinical benefits in a subset of patients with advanced malignancies. Nonetheless, more efforts are needed to identify reliable biomarkers for outcome, to correctly select patients who will benefit from anti-PD-1 treatment. The aim of this study was to investigate the role of peripheral CD8+T cells expressing CD73, involved in the generation of the immune suppressive molecule adenosine, in predicting outcome after nivolumab treatment in advanced melanoma patients. METHODS: PBMCs from 100 melanoma patients treated with nivolumab were collected at National Cancer Institute "G. Pascale" of Naples. Frequencies of CD8+ lymphocytes phenotypes were assessed by flow cytometry at baseline before nivolumab treatment, along with clinical characteristics and blood count parameters. Healthy controls (n = 20) were also analysed. Percentages of baseline T cells expressing PD-1 and CD73 were correlated with outcome after nivolumab treatment. RESULTS: Melanoma patients presented a lower frequency of total circulating CD8+ lymphocytes than control subjects (p = 0.008). Patients with low baseline percentage of circulating CD8+PD-1+CD73+ lymphocytes (< 2.3%) had better survival (22.4 months vs 6.9 months, p = 0.001). Patients (39%) with clinical benefit from nivolumab therapy presented a significantly lower frequency of circulating CD8+PD-1+CD73+ lymphocytes than patients who progressed to nivolumab treatment (p = 0.02). CONCLUSIONS: Our observations suggest that baseline CD73 expression on circulating CD8+PD-1+ lymphocytes appear a promising biomarker of response to anti-PD-1 treatment in melanoma patients. Further investigations are needed for validation and for clarifying its role as prognostic or predictive marker.


Subject(s)
Melanoma , Nivolumab , CD8-Positive T-Lymphocytes , Humans , Melanoma/drug therapy , Nivolumab/pharmacology , Nivolumab/therapeutic use , Prognosis , Programmed Cell Death 1 Receptor
18.
Molecules ; 25(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143377

ABSTRACT

The aim of this research was to verify the application of alginate in combination with Ca2+ and Zn2+ ions to produce a floating and prolonged release system for the oral administration of prednisolone. Hollow and floating gel-beads were designed using prilling/ionotropic gelation as the microencapsulation technique, zinc acetate in the gelling solution as the alginate external crosslinker, and calcium carbonate in the feed as the internal crosslinking agent able to generate gas when in contact with the acidic zinc acetate solution. To achieve this goal, drug/alginate solutions were opportunely combined with different amounts of calcium carbonate. The effect of the addition of calcium carbonate into the feed solution on buoyancy, encapsulation efficiency, morphology, size distribution, as well as in vitro drug release profile of the alginate particles was studied. Moreover, the ability of the floating beads to modulate in vivo the anti-inflammatory response was assayed using the carrageenan-induced acute oedema in rat paw. The proposed strategy allowed obtaining alginate beads with extremely high encapsulation efficiency values (up to 94%) and a very porous inner matrix conferring buoyancy in vitro in simulated gastric fluid up to 5 h. Moreover, in vivo, the best formulation, F4, resulted in the ability to prolong the anti-inflammatory effect up to 15 h compared with raw prednisolone.


Subject(s)
Alginates/chemistry , Calcium/chemistry , Delayed-Action Preparations/chemistry , Prednisolone/chemistry , Zinc/chemistry , Anti-Inflammatory Agents/chemistry , Polysaccharides/chemistry
19.
FEBS J ; 287(14): 2948-2960, 2020 07.
Article in English | MEDLINE | ID: mdl-31863621

ABSTRACT

Copper is an essential element for all living organisms; however, it becomes toxic at high concentrations due to its ability to participate in many redox reactions. This vital micronutrient balance plays an important role in the battle between host and pathogen, due to its use by the host to intoxicate pathogens. In this study, we explore the effects of copper deprivation on Helicobacter infection in mice using the copper chelator tetrathiomolybdate. Our results reveal that Helicobacter infection significantly reduces copper concentration in mice stomachs without affecting its circulating levels. Moreover, in copper-deprived mice, bacteria hardly colonize the epithelium and mice show less gastric damage in comparison with the infected ones. However, when the copper chelator is administered after infection, the condition of the mouse stomachs declines. This could be explained by the lower copper availability in tetrathiomolybdate-treated mice, which would reduce macrophages' action against the pathogen. In this scenario, we observe that the protective factor trefoil factor 1 is induced upon copper-deprived conditions, probably contributing to the inefficacy of infection, whereas, when the chelator is administered after infection, the gene is already silenced by bacteria and cannot be restored. In conclusion, our data suggest that Helicobacter takes advantage of gastric copper reducing its availability for the host and that copper levels have an impact on the outcome of infection.


Subject(s)
Copper/deficiency , Disease Models, Animal , Gastric Mucosa/microbiology , Helicobacter Infections/prevention & control , Helicobacter pylori/isolation & purification , Trefoil Factor-1/metabolism , Animals , Gastric Mucosa/metabolism , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Male , Mice , Mice, Inbred C57BL , Trefoil Factor-1/genetics
20.
Methods Enzymol ; 629: 257-267, 2019.
Article in English | MEDLINE | ID: mdl-31727244

ABSTRACT

CD73 is an ectonucleotidase able to catabolize 5'-adenosine monophosphate (AMP) into adenosine at the extracellular level. Extracellular adenosine plays a critical role in regulating many processes under physiological and pathological conditions. In the context of cancer, the expression and activity of CD73, either in tissue and in biological fluids, is increased leading to high levels of adenosine that potently suppress T-cell mediated responses, promoting tumor progression through stimulation of adenosine receptors. Compelling evidence indicates that elevated levels of CD73-generating adenosine limit the efficacy of cancer immunotherapy. Inhibitors of ectonucleotidases and antagonists of adenosine receptors have emerged as new therapeutic tools to improve anti-tumor immune response and potentially synergize with currently used immunotherapeutic agents. Measurement of CD73 levels in serum of cancer patients is a promising approach that, although it needs to be validated, may help to select patients who will benefit from adenosine-targeting agents and predict response to immunotherapy. Here, we describe a simple and fast method to evaluate the AMPase activity of CD73 in peripheral blood that may also be applied to other biological fluids.


Subject(s)
5'-Nucleotidase/blood , Adenosine/antagonists & inhibitors , Enzyme Assays/methods , Neoplasms/drug therapy , 5'-Nucleotidase/metabolism , Adenosine/immunology , Adenosine/metabolism , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Disease Progression , GPI-Linked Proteins/blood , GPI-Linked Proteins/metabolism , Humans , Neoplasms/blood , Neoplasms/immunology , Neoplasms/pathology , Patient Selection , Receptors, Purinergic P1/immunology , Receptors, Purinergic P1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...