Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000338

ABSTRACT

Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.


Subject(s)
Artificial Intelligence , Ki-1 Antigen , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, Chimeric Antigen , Single-Chain Antibodies , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Humans , Ki-1 Antigen/immunology , Ki-1 Antigen/metabolism , Animals , Mice , Protein Binding , Surface Plasmon Resonance
2.
Heliyon ; 10(11): e32458, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933959

ABSTRACT

This study sheds light on a ground-breaking biochemical mechanotransduction pathway and reveals how Piezo1 channels orchestrate cell migration. We observed an increased cell migration rate in HEK293T (HEK) cells treated with Yoda1, a Piezo1 agonist, or in HEK cells overexpressing Piezo1 (HEK + P). Conversely, a significant reduction in cell motility was observed in HEK cells treated with GsMTx4 (a channel inhibitor) or upon silencing Piezo1 (HEK-P). Our findings establish a direct correlation between alterations in cell motility, Piezo1 expression, abnormal F-actin microfilament dynamics, and the regulation of Cofilin1, a protein involved in severing F-actin microfilaments. Here, the conversion of inactive pCofilin1 to active Cofilin1, mediated by the serine/threonine-protein phosphatase 2A catalytic subunit C (PP2AC), resulted in increased severing of F-actin microfilaments and enhanced cell migration in HEK + P cells compared to HEK controls. However, this effect was negligible in HEK-P and HEK cells transfected with hsa-miR-133b, which post-transcriptionally inhibited PP2AC mRNA expression. In summary, our study suggests that Piezo1 regulates cell migration through a biochemical mechanotransduction pathway involving PP2AC-mediated Cofilin1 dephosphorylation, leading to changes in F-actin microfilament dynamics.

3.
Antibiotics (Basel) ; 13(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927154

ABSTRACT

The impact of soil fertilization with animal manure on the spread and persistence of antibiotic resistance in the environment is far from being fully understood. To add knowledge about persistence and correlations between antibiotic residues and antibiotic resistance genes (ARGs) in fertilized soil, a longitudinal soil mesocosm study was conducted. Soil samples were collected from the mesocosms immediately before spreading and then afterward at fifteen time points during a 320-day observation period. Eight ARGs (ermB, sul1, tetA, tetG, tetM, cfr, fexA, and optrA) and the class 1 integron-integrase gene, intI1, were determined in both pig slurry and soil, as well as residues of 36 antibiotics. Soil chemical and biochemical parameters were also measured. Twelve antibiotics were detected in the slurry in the range of 3 µg kg-1-3605 µg kg-1, with doxycycline, lincomycin, and tiamulin being the most abundant, whereas ermB, sul1, and tetM were the predominant ARGs. Before spreading, neither antibiotic residues nor ARGs were detectable in the soil; afterwards, their concentrations mirrored those in the slurry, with a gradual decline over the duration of the experiment. After about three months, the effect of the amendment was almost over, and no further evolution was observed.

SELECTION OF CITATIONS
SEARCH DETAIL