Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 41(7): 1859-1874, 2020 05.
Article in English | MEDLINE | ID: mdl-31925871

ABSTRACT

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.


Subject(s)
Diffusion Tensor Imaging/methods , Anisotropy , Diffusion Magnetic Resonance Imaging , Dissection , Humans , Observer Variation , Reproducibility of Results , White Matter/diagnostic imaging
2.
Front Aging Neurosci ; 11: 270, 2019.
Article in English | MEDLINE | ID: mdl-31632265

ABSTRACT

Recent evidence shows that neuroinflammation plays a role in many neurological diseases including mild cognitive impairment (MCI) and Alzheimer's disease (AD), and that free water (FW) modeling from clinically acquired diffusion MRI (DTI-like acquisitions) can be sensitive to this phenomenon. This FW index measures the fraction of the diffusion signal explained by isotropically unconstrained water, as estimated from a bi-tensor model. In this study, we developed a simple but powerful whole-brain FW measure designed for easy translation to clinical settings and potential use as a priori outcome measure in clinical trials. These simple FW measures use a "safe" white matter (WM) mask without gray matter (GM)/CSF partial volume contamination (WM safe) near ventricles and sulci. We investigated if FW inside the WM safe mask, including and excluding areas of white matter damage such as white matter hyperintensities (WMHs) as shown on T2 FLAIR, computed across the whole white matter could be indicative of diagnostic grouping along the AD continuum. After careful quality control, 81 cognitively normal controls (NC), 103 subjects with MCI and 42 with AD were selected from the ADNIGO and ADNI2 databases. We show that MCI and AD have significantly higher FW measures even after removing all partial volume contamination. We also show, for the first time, that when WMHs are removed from the masks, the significant results are maintained, which demonstrates that the FW measures are not just a byproduct of WMHs. Our new and simple FW measures can be used to increase our understanding of the role of inflammation-associated edema in AD and may aid in the differentiation of healthy subjects from MCI and AD patients.

3.
Front Neuroinform ; 11: 54, 2017.
Article in English | MEDLINE | ID: mdl-28868000

ABSTRACT

Data visualization is one of the most important tool to explore the brain as we know it. In this work, we introduce a novel browser-based solution for medical imaging data visualization and interaction with diffusion-weighted magnetic resonance imaging (dMRI) and tractography data: Fiberweb. It uses a recent technology, WebGL, that has yet to be fully explored for medical imaging purposes. There are currently very few software tools that allow medical imaging data visualization in the browser, and none of these tools support efficient data interaction and processing, such as streamlines selection and real-time deterministic and probabilistic tractography (RTT). With Fiberweb allowing these types of interaction, it is no longer the case. We show results of the visualization of medical imaging data, and demonstrate that our new RTT probabilistic algorithm can compare to a state of the art offline algorithm. Overall, Fiberweb pushes the boundary of interaction combined with scientific visualization, which opens great perspectives for quality control and neurosurgical navigation on browser-based mobile and static devices.

4.
Neuroimage Clin ; 16: 222-233, 2017.
Article in English | MEDLINE | ID: mdl-28794981

ABSTRACT

In this work, we propose a diffusion MRI protocol for mining Parkinson's disease diffusion MRI datasets and recover robust disease-specific biomarkers. Using advanced high angular resolution diffusion imaging (HARDI) crossing fiber modeling and tractography robust to partial volume effects, we automatically dissected 50 white matter (WM) fascicles. These fascicles connect deep nuclei (thalamus, putamen, pallidum) to different cortical functional areas (associative, motor, sensorimotor, limbic), basal forebrain and substantia nigra. Then, among these 50 candidate WM fascicles, only the ones that passed a test-retest reproducibility procedure qualified for further tractometry analysis. Leveraging the unique 2-timepoints test-retest Parkinson's Progression Markers Initiative (PPMI) dataset of over 600 subjects, we found statistically significant differences in tract profiles along the subcortico-cortical pathways between Parkinson's disease patients and healthy controls. In particular, significant increases in FA, apparent fiber density, tract-density and generalized FA were detected in some locations of the nigro-subthalamo-putaminal-thalamo-cortical pathway. This connection is one of the major motor circuits balancing the coordination of motor output. Detailed and quantifiable knowledge on WM fascicles in these areas is thus essential to improve the quality and outcome of Deep Brain Stimulation, and to target new WM locations for investigation.


Subject(s)
Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , White Matter/pathology , Biomarkers , Brain/diagnostic imaging , Data Mining , Databases, Factual , Female , Humans , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Reproducibility of Results , White Matter/diagnostic imaging
5.
Alzheimers Dement ; 11(2): 175-83, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25616957

ABSTRACT

BACKGROUND: The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi definition of manual hippocampal segmentation from magnetic resonance imaging (MRI) that can be used as the standard of truth to train new tracers, and to validate automated segmentation algorithms. Training requires large and representative data sets of segmented hippocampi. This work aims to produce a set of HarP labels for the proper training and certification of tracers and algorithms. METHODS: Sixty-eight 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects, balanced by age, medial temporal atrophy, and scanner manufacturer, were segmented by five qualified HarP tracers whose absolute interrater intraclass correlation coefficients were 0.953 and 0.975 (left and right). Labels were validated as HarP compliant through centralized quality check and correction. RESULTS: Hippocampal volumes (mm(3)) were as follows: controls: left = 3060 (standard deviation [SD], 502), right = 3120 (SD, 897); mild cognitive impairment (MCI): left = 2596 (SD, 447), right = 2686 (SD, 473); and Alzheimer's disease (AD): left = 2301 (SD, 492), right = 2445 (SD, 525). Volumes significantly correlated with atrophy severity at Scheltens' scale (Spearman's ρ = <-0.468, P = <.0005). Cerebrospinal fluid spaces (mm(3)) were as follows: controls: left = 23 (32), right = 25 (25); MCI: left = 15 (13), right = 22 (16); and AD: left = 11 (13), right = 20 (25). Five subjects (3.7%) presented with unusual anatomy. CONCLUSIONS: This work provides reference hippocampal labels for the training and certification of automated segmentation algorithms. The publicly released labels will allow the widespread implementation of the standard segmentation protocol.


Subject(s)
Algorithms , Hippocampus/pathology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Pattern Recognition, Automated/methods , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Atrophy , Cognitive Dysfunction/pathology , Female , Functional Laterality , Hippocampus/anatomy & histology , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Organ Size , Reproducibility of Results , Temporal Lobe/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...