Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Plast ; 2023: 5225952, 2023.
Article in English | MEDLINE | ID: mdl-36845359

ABSTRACT

While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.


Subject(s)
Auditory Cortex , Animals , Female , Mice , Humans , Auditory Cortex/physiology , Animals, Newborn , Vocalization, Animal/physiology , Brain-Derived Neurotrophic Factor/genetics , Acoustic Stimulation/methods , Hearing , Maternal Behavior/physiology , RNA, Messenger
2.
Hear Res ; 366: 38-49, 2018 09.
Article in English | MEDLINE | ID: mdl-29983289

ABSTRACT

When a social sound category initially gains behavioral significance to an animal, plasticity events presumably enhance the ability to recognize that sound category in the future. In the context of learning natural social stimuli, neuromodulators such as norepinephrine and estrogen have been associated with experience-dependent plasticity and processing of newly salient social cues, yet continued plasticity once stimuli are familiar could disrupt the stability of sensorineural representations. Here we employed a maternal mouse model of natural sensory cortical plasticity for infant vocalizations to ask whether the engagement of the noradrenergic locus coeruleus (LC) by the playback of pup-calls is affected by either prior experience with the sounds or estrogen availability, using a well-studied cellular activity and plasticity marker, the immediate early gene c-Fos. We counted call-induced c-Fos immunoreactive (c-Fos-IR) cells in both LC and physiologically validated fields within the auditory cortex (AC) of estradiol or blank-implanted virgin female mice with either 0 or 5-days prior experience caring for vocalizing pups. Estradiol and pup experience interacted both in the induction of c-Fos-IR in the LC, as well as in behavioral measures of locomotion during playback, consistent with the neuromodulatory center's activity being an online reflection of both hormonal and experience-dependent influences on arousal. Throughout core AC, as well as in a high frequency sub-region of AC and in secondary AC, a main effect of pup experience was to reduce call-induced c-Fos-IR, irrespective of estradiol availability. This is consistent with the hypothesis that sound familiarity leads to less c-Fos-mediated plasticity, and less disrupted sensory representations of a meaningful call category. Taken together, our data support the view that any coupling between these sensory and neuromodulatory areas is situationally dependent, and their engagement depends differentially on both internal state factors like hormones and external state factors like prior experience.


Subject(s)
Auditory Cortex/physiology , Estradiol/physiology , Locus Coeruleus/physiology , Proto-Oncogene Proteins c-fos/physiology , Acoustic Stimulation , Animals , Auditory Cortex/anatomy & histology , Behavior, Animal/physiology , Female , Immunohistochemistry , Learning/physiology , Locus Coeruleus/anatomy & histology , Mice , Mice, Inbred CBA , Neuronal Plasticity/physiology , Norepinephrine/physiology , Recognition, Psychology/physiology , Social Behavior , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...