Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Radiol ; 2: 1026442, 2022.
Article in English | MEDLINE | ID: mdl-37492667

ABSTRACT

Composite MRI scales of central nervous system tissue destruction correlate stronger with clinical outcomes than their individual components in multiple sclerosis (MS) patients. Using machine learning (ML), we previously developed Combinatorial MRI scale (COMRISv1) solely from semi-quantitative (semi-qMRI) biomarkers. Here, we asked how much better COMRISv2 might become with the inclusion of quantitative (qMRI) volumetric features and employment of more powerful ML algorithm. The prospectively acquired MS patients, divided into training (n = 172) and validation (n = 83) cohorts underwent brain MRI imaging and clinical evaluation. Neurological examination was transcribed to NeurEx™ App that automatically computes disability scales. qMRI features were computed by lesion-TOADS algorithm. Modified random forest pipeline selected biomarkers for optimal model(s) in the training cohort. COMRISv2 models validated moderate correlation with cognitive disability [Spearman Rho = 0.674; Lin's concordance coefficient (CCC) = 0.458; p < 0.001] and strong correlations with physical disability (Spearman Rho = 0.830-0.852; CCC = 0.789-0.823; p < 0.001). The NeurEx led to the strongest COMRISv2 model. Addition of qMRI features enhanced performance only of cognitive disability model, likely because semi-qMRI biomarkers measure infratentorial injury with greater accuracy. COMRISv2 models predict most granular clinical scales in MS with remarkable criterion validity, expanding scientific utilization of cohorts with missing clinical data.

2.
J Med Imaging (Bellingham) ; 8(1): 014005, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33649733

ABSTRACT

Purpose: Repeated injections of linear gadolinium-based contrast agent (GBCA) have shown correlations with increased signal intensities (SI) on unenhanced T1-weighted (T1w) images. Assessment is usually performed manually on a single slice and the SI as an average of a freehand region-of-interest is reported. We aim to develop a fully automated software that segments and computes SI ratio of dentate nucleus (DN) to pons (DN/P) and globus pallidus (GP) to thalamus (GP/T) for the assessment of gadolinium presence in the brain after a serial GBCA administrations. Approach: All patients ( N = 113 ) underwent at least eight GBCA enhanced scans. The modal SI in the DN, GP, pons, and thalamus were measured volumetrically on unenhanced T1w images and corrected based on the reference protocol (measurement 1) and compared to the SI-uncorrected-modal-volume (measurement 2), SI-corrected-mean-volume (measurement 3), as well as SI-corrected-modal-single slice (measurement 4) approaches. Results: Automatic processing worked on all 2119 studies (1150 at 1.5 T and 969 at 3 T). DN/P were 1.085 ± 0.048 (1.5 T) and 0.979 ± 0.061 (3 T). GP/T were 1.084 ± 0.039 (1.5 T) and 1.069 ± 0.042 (3 T). Modal DN/P ratios from volumetric assessment at 1.5 T failed to show a statistical difference with or without SI corrections ( p = 0.71 ). All other t -tests demonstrated significant differences (measurement 2, 3, 4 compared to 1, p < 0.001 ). Conclusion: The fully automatic method is an effective powerful tool to streamline the analysis of SI ratios in the deep brain tissues. Divergent SI ratios using different approaches reinforces the need to standardize the measurement for the research in this field.

3.
Hum Brain Mapp ; 35(10): 5000-25, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24740833

ABSTRACT

In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them. Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole-brain parcellation.


Subject(s)
Brain Mapping , Brain/anatomy & histology , Connectome , Neural Pathways/anatomy & histology , White Matter/anatomy & histology , Brain/physiology , Cluster Analysis , Datasets as Topic , Diffusion Magnetic Resonance Imaging , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Male , Nerve Net/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...