Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35215700

ABSTRACT

Nanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However, this process remains limited due to the need for proper synthesis-property strategies. Herein, we report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable properties by chemically reducing HAuCl4 in chitosan solutions and different HAuCl4/sodium citrate molar relationships. The structure, electrical, and relaxation properties of nanocomposites have been investigated as a function of HAuCl4/sodium citrate molar relation. It was shown that gold particle size, conductivity, Vogel temperature (glass transition), and water content strongly depend upon HAuCl4/sodium citrate relationships. Two relaxation processes have been observed in nanocomposites; the α-relaxation process, related to a glass transition in wet CS/AuNP films, and the σ-relaxation related to the local diffusion process of ions in a disordered system. The ability to fine-tune both α- and σ-relaxations may be exploited in the proper design of functional materials for biosensors, biomaterials, and flexible electronics applications.

2.
Polymers (Basel) ; 13(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641030

ABSTRACT

Chitosan-gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.

3.
Polymers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502973

ABSTRACT

Complex engineering challenges are revealed in the wind industry; one of them is erosion at the leading edge of wind turbine blades. Water jet erosive wear tests on carbon-fiber reinforced polymer (CFRP) and glass-fiber reinforced polymer (GFRP) were performed in order to determine their resistance at the conditions tested. Vacuum Infusion Process (VIP) was used to obtain the composite materials. Eight layers of bidirectional carbon fabric (0/90°) and nine glass layers of bidirectional glass cloth were used to manufacture the plates. A water injection platform was utilized. The liquid was projected with a pressure of 150 bar on the surface of the specimens through a nozzle. The samples were located at 65 mm from the nozzle at an impact angle of 75°, with an exposure time of 10, 20 and 30 min. SEM and optical microscopy were used to observe the damage on surfaces. A 3D optical profilometer helped to determine the roughness and see the scar profiles. The results showed that the volume loss for glass fiber and carbon fiber were 10 and 19 mm3, respectively. This means that the resistance to water jet erosion in uncoated glass fiber was approximately two times lower than uncoated carbon fiber.

4.
Microsc Res Tech ; 81(12): 1383-1396, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30351484

ABSTRACT

The characteristics of the electron-mirror effect (EME) image depend on both the scanning electron microscope parameters and the sample's physical properties. The behavior of human tooth (dentin and enamel) and synthetic hydroxyapatite samples submitted to the EME procedure is presented in this work. Polyethylene terephthalate (PET) and epoxy resin, two good EME producers, were used for comparison. A distorted EME image was observed in the obtained dentin's surface, but enamel and synthetic hydroxyapatite surfaces did not produce the EME. After ex situ calcination treatments of the teeth at 700 and 1,200°C, the EME was observed in dentin, enamel, and synthetic hydroxyapatite, but highly deformed EME images were produced. We show that these last observations are the result of the well-known charge-edge effect. After EME analysis, the calculated dielectric constant was 8.7 for dentin and 3.8 for PET. RESEARCH HIGHLIGHTS: Electron-mirror effect (EME) was observed in dentin but not in enamel or synthetic hydroxyapatite. Highly deformed EME images are produced in all samples after calcination at above 700°C. For dentin the calculated dielectric constant was 8.7 and for PET is was 3.8.


Subject(s)
Dental Enamel/ultrastructure , Dentin/ultrastructure , Durapatite/chemistry , Composite Resins/chemistry , Dental Enamel/chemistry , Dentin/chemistry , Durapatite/chemical synthesis , Humans , Microscopy, Electron, Scanning , Polyethylene Terephthalates/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...