Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11137, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750097

ABSTRACT

Aquatic detritivores are highly sensitive to changes in temperature and leaf litter quality caused by increases in atmospheric CO2. While impacts on detritivores are evident at the organismal and population level, the mechanisms shaping ecological communities remain unclear. Here, we conducted field and laboratory experiments to examine the interactive effects of changes in leaf litter quality, due to increasing atmospheric CO2, and warming, on detritivore survival (at both organismal and community levels) and detritus consumption rates. Detritivore community consisted of the collector-gathering Polypedilum (Chironomidae), the scraper and facultative filtering-collector Atalophlebiinae (Leptophlebiidae), and Calamoceratidae (Trichoptera), a typical shredder. Our findings reveal intricate responses across taxonomic levels. At the organismal level, poor-quality leaf litter decreased survivorship of Polypedilum and Atalophlebiinae. We observed taxon-specific responses to warming, with varying effects on growth and consumption rates. Notably, species interactions (competition, facilitation) might have mediated detritivore responses to climate stressors, influencing community dynamics. While poor-quality leaf litter and warming independently affected detritivore larvae abundance of Atalophebiinae and Calamoceratidae, their combined effects altered detritus consumption and emergence of adults of Atalophlebiinae. Furthermore, warming influenced species abundances differently, likely exacerbating intraspecific competition in some taxa while accelerating development in others. Our study underscores the importance of considering complex ecological interactions in predicting the impact of climate change on freshwater ecosystem functioning. Understanding these emergent properties contributes to a better understanding of how detritivore communities may respond to future environmental conditions, providing valuable insights for ecosystem management and conservation efforts.


Subject(s)
Fresh Water , Plant Leaves , Animals , Climate Change , Ecosystem , Temperature , Carbon Dioxide/metabolism
2.
Sci Total Environ ; 918: 170360, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38311088

ABSTRACT

Monitoring programs at sub-national and national scales lack coordination, harmonization, and systematic review and analysis at continental and global scales, and thus fail to adequately assess and evaluate drivers of biodiversity and ecosystem degradation and loss at large spatial scales. Here we review the state of the art, gaps and challenges in the freshwater assessment programs for both the biological condition (bioassessment) and biodiversity monitoring of freshwater ecosystems using the benthic macroinvertebrate community. To assess the existence of nationally- and regionally- (sub-nationally-) accepted freshwater benthic macroinvertebrate protocols that are put in practice/used in each country, we conducted a survey from November 2022 to May 2023. Responses from 110 respondents based in 67 countries were received. Although the responses varied in their consistency, the responses clearly demonstrated a lack of biodiversity monitoring being done at both national and sub-national levels for lakes, rivers and artificial waterbodies. Programs for bioassessment were more widespread, and in some cases even harmonized among several countries. We identified 20 gaps and challenges, which we classed into five major categories, these being (a) field sampling, (b) sample processing and identification, (c) metrics and indices, (d) assessment, and (e) other gaps and challenges. Above all, we identify the lack of harmonization as one of the most important gaps, hindering efficient collaboration and communication. We identify the IUCN SSC Global Freshwater Macroinvertebrate Sampling Protocols Task Force (GLOSAM) as a means to address the lack of globally-harmonized biodiversity monitoring and biological assessment protocols.


Subject(s)
Ecosystem , Invertebrates , Animals , Environmental Monitoring/methods , Biodiversity , Rivers , Lakes
3.
Hydrobiologia ; 850(15): 3359-3374, 2023.
Article in English | MEDLINE | ID: mdl-37397167

ABSTRACT

Headwater streams harbor diverse macroinvertebrate communities and are hotspots for leaf litter breakdown. The process of leaf litter breakdown mediated by macroinvertebrates forms an important link between terrestrial and aquatic ecosystems. Yet, how the vegetation type in the local riparian zone influences leaf-associated macroinvertebrate assemblages and leaf litter breakdown rates is still not resolved. We investigated how leaf-associated macroinvertebrate assemblages and leaf litter fragmentation rates differ between forested and non-forested sites using experimental leaf litter bags in sixteen sites paired across eight headwater streams in Switzerland. Our results show that sensitive taxa of the invertebrate orders Ephemeroptera, Plecoptera and Trichoptera (EPT) and the functional group of shredders were strongly associated with forested sites with overall higher values of abundance, diversity, and biomass of EPTs in forested compared to non-forested sites. However, the importance of riparian vegetation differed between study regions, especially for shredders. Fragmentation rates, which are primarily the result of macroinvertebrate shredding, were on average three times higher in forested compared to non-forested sites. Our results demonstrate that not only the composition of the aquatic fauna but also the functioning of an essential ecosystem process depend on the vegetation type in the local riparian zone. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05049-7.

4.
Ecol Evol ; 11(6): 2551-2560, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33815762

ABSTRACT

Over 70% of the total channel length in all river basins is formed by low order streams, many of which originate on mountaintops. Headwater streams play fundamental roles in processing and transporting terrestrial and aquatic organic matter, often harboring high biodiversity in bottom leaf patches deposited from riparian vegetation. The objective of this study was to assess the variation in taxonomic composition (measured by beta diversity of aquatic macroinvertebrates) among stream sites located in the Espinhaço Meridional Mountain Range, part of a UNESCO Biosphere Reserve in eastern Brazil. We tested two hypotheses. (a) Taxa turnover is the main reason for differences in aquatic insect assemblages within stream sites; we predicted that turnover would be higher than nestedness in all stream sites. (b) Stream site altitude and catchment elevation range are the main explanatory variables for the differences in beta diversity; we predicted that local stream site variables would account for only minor amounts of variation. In both dry and wet seasons, we sampled twice in two habitat types (five leaf patches in pools and five in riffles) in each of nine stream sites distributed in three different river basins. We computed average pairwise beta diversity among sampling stations and seasons in each stream site by using Jaccard and Bray-Curtis indices, and calculated the percentages of diversity resulting from turnover and nestedness. Finally, we tested the degree that local- or catchment-level predictor variables explained beta diversity. We found that turnover was the main component of beta diversity and that both dissolved oxygen and elevation range best explained Bray-Curtis beta diversity. These results reinforce the importance of leaf patches in montane (sky islands) Neotropical savanna streams as biodiversity hotbeds for macroinvertebrates, and that both local and landscape variables explained beta diversity.

5.
Sci Total Environ ; 772: 145494, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33581537

ABSTRACT

Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.


Subject(s)
Climate Change , Ecosystem , Bioreactors , Food Chain
7.
PLoS One ; 13(1): e0190743, 2018.
Article in English | MEDLINE | ID: mdl-29293646

ABSTRACT

We evaluated the effect of leaves of native and exotic tree species on the feeding activity and performance of the larvae of Triplectides gracilis, a typical caddisfly shredder in Atlantic Forest streams. Leaves of four native species that differ in chemistry and toughness (Hoffmannia dusenii, Miconia chartacea, Myrcia lineata and Styrax pohlii) and the exotic Eucalyptus globulus were used to determine food preferences and rates of consumption, production of fine particulate organic matter (FPOM), growth and survival of shredders. We hypothesized that the consumption rates of leaves of Eucalyptus and their effects on the growth and survival of shredders could be predicted by leaf chemistry and toughness. The larvae preferred to feed on soft leaves (H. dusenii and M. chartacea) independently of the content of nutrients (N and P) and secondary compounds (total phenolics). When such leaves were absent, they preferred E. globulus and did not consume the tough leaves (M. lineata and S. pohlii). In monodietary experiments, leaf consumption and FPOM production differed among the studied leaves, and the values observed for the E. globulus treatments were intermediate between the soft and tough leaves. The larvae that fed on H. dusenii and M. chartacea grew constantly over five weeks, while those that fed on E. globulus lost biomass. Larval survival was higher on leaves of H. dusenii, M. chartacea and S. pohlii than on E. globulus and M. lineata leaves. Although E. globulus was preferred over tougher leaves, long-term consumption of leaves of the exotic species may affect the abundance of T. gracilis in the studied stream. Additionally, our results suggest that leaf toughness can be a determining factor for the behavior of shredders where low-quality leaves are abundant, as in several tropical streams.


Subject(s)
Eucalyptus , Feeding Behavior , Forests , Insecta/physiology , Plant Leaves , Animals , Brazil , Insecta/growth & development
8.
Proc Biol Sci ; 283(1829)2016 04 27.
Article in English | MEDLINE | ID: mdl-27122551

ABSTRACT

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.


Subject(s)
Biodegradation, Environmental , Plants , Rivers , Biodiversity , Biota , Carbon Cycle , Climate , Ecosystem , Hydrogen-Ion Concentration , Phylogeny
9.
Ecology ; 96(2): 550-61, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26240875

ABSTRACT

Biodiversity and ecosystem-functioning theory suggest that litter mixtures composed of dissimilar leaf species can enhance decomposition due to species trait complementarity. Here we created a continuous gradient of litter chemistry trait variability within species mixtures to assess effects of litter dissimilarity on three related processes in a natural stream: litter decomposition, fungal biomass accrual in the litter, and nitrogen and phosphorus immobilization. Litter from a pool of eight leaf species was analyzed for chemistry traits affecting decomposition (lignin, nitrogen, and phosphorus) and assembled in all of the 28 possible two-species combinations. Litter dissimilarity was characterized in terms of a range of trait-diversity measures, using Euclidean and Gower distances and dendrogram-based indices. We found large differences in decomposition rates among leaf species, but no significant relationships between decomposition rate of individual leaf species and litter trait dissimilarity, irrespective of whether decomposition was mediated by microbes alone or by both microbes and litter-consuming invertebrates. Likewise, no effects of trait dissimilarity emerged on either fungal biomass accrual or changes during decomposition of nitrogen or phosphorus concentrations in individual leaf species. In line with recent meta-analyses, these results provide support for the contention that litter diversity effects on decomposition, at least in streams, are less pronounced than effects on terrestrial primary productivity.


Subject(s)
Fungi/physiology , Nitrogen/chemistry , Phosphorus/chemistry , Plant Leaves/anatomy & histology , Biodegradation, Environmental , Biomass , Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/microbiology , Species Specificity , Trees
10.
Ecology ; 92(9): 1839-48, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939080

ABSTRACT

Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expected latitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming.


Subject(s)
Biodiversity , Food Chain , Invertebrates/physiology , Animals , Demography , Feeding Behavior
11.
Ecol Lett ; 14(3): 289-94, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21299824

ABSTRACT

The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.


Subject(s)
Fresh Water , Plant Leaves/metabolism , Carbon Cycle , Carbon Dioxide , Carbon Sequestration , Climate Change , Ecosystem , Plants/metabolism , Temperature
12.
Neotrop. entomol ; 34(2): 337-340, Mar.-Apr. 2005. graf, tab
Article in English | LILACS | ID: lil-451413

ABSTRACT

Many species of Trichoptera larvae use organic or inorganic particles to build cases that protect them from predators. The study of the wide variety of structures produced by trichopterans is important to understand the evolution of case building behavior. The objective of this work was to investigate if larvae of Barypenthus concolor (Burmeister) are capable of selecting particles of specific sizes to build their cases. The study site was an altitudinal stream in Serra do Cipó National Park, MG, Brazil). Cases and substrate samples were collected at three sites of the stream and submitted to granulometric analyses. The average mass of each particle size found in each site was used to determine the particle size proportion present in the substrate. The proportions of particle size of each case (site I: n = 10, site II: n = 19, site III: n = 13) were also analyzed. Possible differences between the proportions of the particle sizes of the substrate and of those used by B. concolor larvae were assessed by the Chi-square test. Medium and fine gravel predominated at the three sites (>70 percent). There were no significant differences between the expected and observed particle size proportion in the cases. Therefore, B. concolor does not select specific particle sizes for case building.


Larvas de muitas espécies de Trichoptera utilizam partículas orgânicas ou inorgânicas para construir seus casulos nos quais ficam protegidas de predadores. O estudo da grande variedade de estruturas produzidas por tricópteros é muito importante para o entendimento da evolução do comportamento de construção de casulos. O objetivo deste trabalho foi investigar se larvas de Barypenthus concolor (Burmeister) são capazes de selecionar tamanhos específicos de partículas para a construção de casulos. O estudo foi realizado em um riacho de altitude no Parque Nacional da Serra do Cipó, MG. Coletaram-se casulos e amostras do substrato em três locais do riacho, para os quais foram feitas análises granulométricas. A média da massa de cada tamanho de partícula encontrada em cada local foi utilizada para a determinação das proporções dos tamanhos de partícula presentes no substrato. As proporções dos tamanhos de partícula de cada casulo (ponto I: n = 10, ponto II: n = 19, ponto III: n = 13) foram também analisadas. As possíveis diferenças entre as proporções dos tamanhos de partícula presentes e dos tamanhos de partícula utilizados pelas larvas de B. concolor foram avaliadas por meio de Qui-quadrado. Cascalho médio e fino predominaram nos três locais amostrados (>70 por cento). Não houve diferenças significativas entre as proporções esperadas e as observadas para tamanhos de partícula nos casulos. Portanto, B. concolor não seleciona tamanhos específicos de partículas para a construção de casulos.


Subject(s)
Insecta
SELECTION OF CITATIONS
SEARCH DETAIL
...