Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 47(12): 1444-1456, 2018 06.
Article in English | MEDLINE | ID: mdl-29738614

ABSTRACT

Occludin is a component of tight junctions, which are essential structural components of the blood-brain barrier. However, occludin is expressed in cells without tight junctions, implying additional functions. We determined the expression and localisation of occludin in astrocytes in cell culture and in human brain tissue, and sought novel binding partners using a proteomic approach. Expression was investigated by immunocytochemistry and immunoblotting in the 1321N1 astrocytoma cell line and ScienCell human primary astrocytes, and by immunohistochemistry in human autopsy brain tissue. Recombinant N- and C-terminal occludin was used to pull-down proteins from 1321N1 cell lysates and protein-binding partners identified by mass spectrometry analysis. Occludin was expressed in both the cytoplasm and nucleus of astrocytes in vitro and in vivo. Mass spectrometry identified binding to nuclear and cytoplasmic proteins, particularly those related to RNA metabolism and nuclear function. Occludin is expressed in several subcellular compartments of brain cell-types that do not form tight junctions and the expression patterns in cell culture reflect those in human brain tissue, indicating they are suitable model systems. Proteomic analysis suggests that occludin has novel functions in neuroepithelial cells that are unrelated to tight junction formation. Further research will establish the roles of these functions in both cellular physiology and in disease states.


Subject(s)
Astrocytes/metabolism , Astrocytoma/metabolism , Brain/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Endothelial Cells/metabolism , Occludin/metabolism , RNA/metabolism , Cell Line, Tumor , Cells, Cultured , Cytological Techniques , Fetus , Humans , Mass Spectrometry , Proteomics
2.
Mol Brain ; 8: 51, 2015 Aug 22.
Article in English | MEDLINE | ID: mdl-26297026

ABSTRACT

BACKGROUND: The insulin/IGF1 signalling (IIS) pathways are involved in longevity regulation and are dysregulated in neurons in Alzheimer's disease (AD). We previously showed downregulation in IIS gene expression in astrocytes with AD-neuropathology progression, but IIS in astrocytes remains poorly understood. We therefore examined the IIS pathway in human astrocytes and developed models to reduce IIS at the level of the insulin or the IGF1 receptor (IGF1R). RESULTS: We determined IIS was present and functional in human astrocytes by immunoblotting and showed astrocytes express the insulin receptor (IR)-B isoform of Ir. Immunocytochemistry and cell fractionation followed by western blotting revealed the phosphorylation status of insulin receptor substrate (IRS1) affects its subcellular localisation. To validate IRS1 expression patterns observed in culture, expression of key pathway components was assessed on post-mortem AD and control tissue using immunohistochemistry. Insulin signalling was impaired in cultured astrocytes by treatment with insulin + fructose and resulted in decreased IR and Akt phosphorylation (pAkt S473). A monoclonal antibody against IGF1R (MAB391) induced degradation of IGF1R receptor with an associated decrease in downstream pAkt S473. Neither treatment affected cell growth or viability as measured by MTT and Cyquant® assays or GFAP immunoreactivity. DISCUSSION: IIS is functional in astrocytes. IR-B is expressed in astrocytes which differs from the pattern in neurons, and may be important in differential susceptibility of astrocytes and neurons to insulin resistance. The variable presence of IRS1 in the nucleus, dependent on phosphorylation pattern, suggests the function of signalling molecules is not confined to cytoplasmic cascades. Down-regulation of IR and IGF1R, achieved by insulin + fructose and monoclonal antibody treatments, results in decreased downstream signalling, though the lack of effect on viability suggests that astrocytes can compensate for changes in single pathways. Changes in signalling in astrocytes, as well as in neurons, may be important in ageing and neurodegeneration.


Subject(s)
Astrocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Aged , Astrocytes/drug effects , Brain/drug effects , Brain/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Female , Fructose/pharmacology , Humans , Immunohistochemistry , Insulin/pharmacology , Male , Middle Aged , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...