Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 196(6): 520, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713379

ABSTRACT

Salt marshes pose challenges for the birds that inhabit them, including high rates of nest flooding, tipping, and predation. The impacts of rising sea levels and invasive species further exacerbate these challenges. To assess the urgency of conservation and adequacy of new actions, researchers and wildlife managers may use population viability analyses (PVAs) to identify population trends and major threats. We conducted PVA for Formicivora acutirostris, which is a threatened neotropical bird species endemic to salt marshes. We studied the species' demography in different sectors of an estuary in southern Brazil from 2006 to 2023 and estimated the sex ratio, longevity, productivity, first-year survival, and mortality rates. For a 133-year period, starting in 1990, we modeled four scenarios: (1) pessimistic and (2) optimistic scenarios, including the worst and best values for the parameters; (3) a baseline scenario, with intermediate values; and (4) scenarios under conservation management, with increased recruitment and/or habitat preservation. Projections indicated population decline for all assessment scenarios, with a 100% probability of extinction by 2054 in the pessimistic scenario and no extinction in the optimistic scenario. The conservation scenarios indicated population stability with 16% improvement in productivity, 10% improvement in first-year survival, and stable carrying capacity. The disjunct distribution of the species, with remnants concentrated in a broad interface with arboreal habitats, may seal the population decline by increasing nest predation. The species should be considered conservation dependent, and we recommend assisted colonization, predator control, habitat recovery, and ex situ conservation.


Subject(s)
Conservation of Natural Resources , Population Dynamics , Wetlands , Animals , Brazil , Extinction, Biological , Environmental Monitoring/methods , Endangered Species , Birds , Ecosystem
2.
Mol Ecol Resour ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173824

ABSTRACT

Dispersal is a crucial mechanism to living beings, allowing them to reach new resources such that populations and species can occupy new environments. However, directly observing the dispersal mechanisms of widespread species can be costly or even impractical, which is the case for mangrove trees. The influence of ocean currents on mangrove dispersal is increasingly evident; however, few studies mechanistically relate the patterns of population distribution with the dispersal by oceanic currents under an integrated framework. Here, we evaluate the role of oceanic currents on connectivity of Rhizophora mangle along the Southwest Atlantic. We inferred population genetic structure and migration rates, simulated the displacement of propagules and tested our hypotheses with Mantel tests and redundancy analysis. We observed populations structured in two major groups, north and south, which is corroborated by other studies with Rhizophora and other coastal plants. Inferred recent migration rates do not indicate ongoing gene flow between sites. Conversely, long-term migration rates were low across groups and contrasting dispersal patterns within each one, which is consistent with long-distance dispersal events. Our hypothesis tests suggest that both isolation by distance and isolation by oceanography (derived from the oceanic currents) can explain the neutral genetic variation of R. mangle in the region. Our findings expand current knowledge of mangrove connectivity and highlight how the association of molecular methods with oceanographic simulations improve the interpretation of the dispersal process. This integrative approach is a cost- and time-efficient strategy to include dispersal and connectivity data into marine protected areas planning and management.

3.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202406

ABSTRACT

Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.

4.
Evolution ; 74(9): 2170-2171, 2020 09.
Article in English | MEDLINE | ID: mdl-32686107

ABSTRACT

Extensive lineage interchanges among Neotropical biomes are key to understanding their remarkable biodiversity. At a population level, one could expect to observe past cross-regional connections. The description of the phylogeographic history of a forest-associated lizard by Ledo et al. (2020) revealed a likely interbiome dispersal route through networks of riparian forests surrounded by dry habitats. We anticipate that future studies focusing on understudied widespread organisms like plants will build on these findings to better describe the origins of Neotropical diversity.


Subject(s)
Lizards , Animals , Biodiversity , Biological Evolution , Forests , Lizards/genetics , Phylogeography
5.
Appl Microbiol Biotechnol ; 104(12): 5477-5492, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32307572

ABSTRACT

The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.


Subject(s)
Cyanides/metabolism , Glutaredoxins/metabolism , Oxidative Stress , Sulfurtransferases/metabolism , Xylella/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glutaredoxins/genetics , Models, Molecular , Phylogeny , Protein Conformation , Sulfurtransferases/genetics , Thiosulfate Sulfurtransferase/metabolism
6.
Mol Ecol ; 29(2): 344-362, 2020 01.
Article in English | MEDLINE | ID: mdl-31834961

ABSTRACT

Environmental variation along the geographical space can shape populations by natural selection. In the context of global warming and changing precipitation regimes, it is crucial to understand the role of environmental heterogeneity in tropical trees adaptation, given their disproportional contribution to water and carbon biogeochemical cycles. Here, we investigated how heterogeneity in freshwater availability along tropical wetlands has influenced molecular variations of the black mangrove (Avicennia germinans). A total of 57 trees were sampled at seven sites differing markedly in precipitation regime and riverine freshwater inputs. Using 2,297 genome-wide single nucleotide polymorphic markers, we found signatures of natural selection by the association between variations in allele frequencies and environmental variables, including the precipitation of the warmest quarter and the annual precipitation. Additionally, we found candidate loci for selection based on statistical deviations from neutral expectations of interpopulation differentiation. Most candidate loci within transcribed sequences were functionally associated with central aspects of drought tolerance or plant response to drought. Moreover, our results suggest the occurrence of the rapid evolution of a population, probably in response to sudden and persistent limitations in plant access to soil water, following a road construction in 1974. Observations supporting rapid evolution included the reduction in tree size and changes in allele frequencies and in transcript expression associated with increased drought tolerance through the accumulation of osmoprotectants and antioxidants, biosynthesis of cuticles, protection against protein degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role of spatial heterogeneity in freshwater availability in the specialization of this typically tropical tree.


Subject(s)
Acanthaceae/genetics , Acanthaceae/physiology , Droughts , Ecology , Fresh Water , Genome, Plant/genetics , RNA-Seq , Wetlands
7.
Sci Rep ; 9(1): 19936, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882752

ABSTRACT

Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.


Subject(s)
Adaptation, Biological/genetics , Adaptation, Physiological/genetics , Trees/genetics , Trees/physiology , Acclimatization , Adaptation, Physiological/physiology , Biodiversity , Climate Change , Ecosystem , Fresh Water , Photosynthesis , Plant Leaves/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Seasons , Solar Energy , Temperature , Water , Xylem/physiology
8.
Mar Pollut Bull ; 116(1-2): 440-447, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28129923

ABSTRACT

Industrial areas on estuarine systems are commonly affected by heavy metals, affecting all local biota. Random Amplified Polymorphic DNA (RAPD) was used to evaluate genetic diversity of Ucides cordatus at mangroves in southeastern Brazil (Juréia, J; São Vicente, SV; and Cubatão, C), with distinct pollution levels by metals. The genetic diversity of this species was compared with concentrations of metals (Cd, Pb, Cu, Cr and Hg) in the environment. A pollution gradient was confirmed (SV>C>J), with low levels detected in water, except for mercury in SV. All metals in the sediment samples were below Threshold Effect Level (TEL), without an apparent biological risk to the biota. Genetic distance was very similar between J and C, with SV occurring as an out-group. RAPD was a powerful tool to investigate the effect of metal pollution on genetic diversity of this mangrove crab, and to evaluate the conservation status of the mangrove ecosystem.


Subject(s)
Brachyura/genetics , Environmental Monitoring , Genetic Variation , Metals, Heavy , Water Pollutants, Chemical , Animals , Conservation of Natural Resources , Ecosystem , Random Amplified Polymorphic DNA Technique , Rhizophoraceae
9.
Mar. Pollut. Bull. ; 116(1-2): 440-447, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15395

ABSTRACT

Industrial areas on estuarine systems are commonly affected by heavy metals, affecting all local biota. Random Amplified Polymorphic DNA (RAPD) was used to evaluate genetic diversity of Ucides cordatus at mangroves in southeastern Brazil (Jureia, j; Sao Vicente, SV; and Cubatao, C), with distinct pollution levels by metals. The genetic diversity of this species was compared with concentrations of metals (Cd, Pb, Cu, Cr and Hg) in the environment. A pollution gradient was confirmed (SV > C > J), with low levels detected in water, except for mercury in SV. All metals in the sediment samples were below Threshold Effect Level (TEL), without an apparent biological risk to the biota. Genetic distance was very similar between J and C, with SV occurring as an out-group. RAPD was a powerful tool to investigate the effect of metal pollution on genetic diversity of this mangrove crab, and to evaluate the conservation status of the mangrove ecosystem.

10.
Appl Plant Sci ; 4(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27672519

ABSTRACT

PREMISE OF THE STUDY: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant. METHODS AND RESULTS: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively. CONCLUSIONS: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...