Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39089880

ABSTRACT

Ongoing viral transcription from the reservoir of HIV-1 infected long-lived memory CD4+ T cells presents a barrier to cure and associates with poorer health outcomes for people living with HIV, including chronic immune activation and inflammation. We previously reported that didehydro-cortistatin A (dCA), an HIV-1 Tat inhibitor, blocks HIV-1 transcription. Here, we examine the impact of dCA on host immune CD4+ T-cell transcriptional and epigenetic states. We performed a comprehensive analysis of genome-wide transcriptomic and DNA methylation profiles upon long-term dCA treatment of primary human memory CD4+ T cells. dCA prompted specific transcriptional and DNA methylation changes in cell cycle, histone, interferon-response, and T-cell lineage transcription factor genes, through inhibition of both HIV-1 and Mediator kinases. These alterations establish a tolerogenic Treg/Th2 phenotype, reducing viral gene expression and mitigating inflammation in primary CD4+ T cells during HIV-1 infection. In addition, dCA suppresses the expression of lineage-defining transcription factors for Th17 and Th1 cells, critical HIV-1 targets, and reservoirs. dCA's benefits thus extend beyond viral transcription inhibition, modulating the immune cell landscape to limit HIV-1 acquisition and inflammatory environment linked to HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes , DNA Methylation , HIV Infections , HIV-1 , Heterocyclic Compounds, 4 or More Rings , Humans , HIV-1/drug effects , HIV-1/physiology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , DNA Methylation/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Transcription, Genetic/drug effects , Epigenesis, Genetic/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Th1 Cells/metabolism , Isoquinolines
2.
Curr Opin HIV AIDS ; 18(5): 264-272, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37535041

ABSTRACT

PURPOSE OF REVIEW: This review highlights advances in HIV transcription and epigenetic latency mechanisms and outlines current therapeutic approaches to eliminate or block the HIV-1 latent reservoir. RECENT FINDINGS: Novel host factors have been reported to modulate HIV-1 transcription and latency. Chromatin affinity purification strategies followed by mass spectrometry (ChAP-MS) identified the chaperone protein p32 to play an important role in HIV-1 transcriptional regulation via interactions with the viral transcriptional activator Tat. Similarly, an shRNA screen identified the methyltransferase SMYD5 contributing to HIV-1 transcriptional activation also by modulating Tat activity. These new factors, among others, represent potential druggable targets that could be explored in the 'block-and-lock' or 'shock-and-kill' approaches. SUMMARY: The HIV-1 latent reservoir is established early after infection, persists during antiretroviral therapy, and is the source of viral rebound after treatment interruption. An HIV cure requires either eliminating this reservoir or blocking latent proviral reactivation in the absence of antiretroviral therapy (ART). Understanding the mechanisms and key-players modulating HIV transcriptional and reactivation may facilitate therapeutic advancements. Here we summarize, the latest findings on host factors' roles in HIV transcriptional regulation.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Virus Latency/genetics , HIV Infections/drug therapy , HIV Infections/genetics , Proviruses , CD4-Positive T-Lymphocytes
3.
Proc Natl Acad Sci U S A ; 120(1): e2217476120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36584296

ABSTRACT

HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.


Subject(s)
HIV Infections , HIV-1 , Humans , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , HIV-1/physiology , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Molecular Chaperones/metabolism , HIV Infections/genetics , Transcription, Genetic , HIV Long Terminal Repeat/genetics
SELECTION OF CITATIONS
SEARCH DETAIL