Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecancermedicalscience ; 17: 1582, 2023.
Article in English | MEDLINE | ID: mdl-37533941

ABSTRACT

99mTc-EDDA/HYNIC-TOC is an easily available and cheaper radionuclide that could be used for somatostatin-receptor-based imaging of neuroendocrine tumours (NETs). We aimed to evaluate the diagnostic performance of 99mTc-EDDA/HYNIC-TOC compared to111In-DTPA-octreotide in patients (pts) with NETs. We performed a prospective diagnostic study including pts with biopsy-confirmed NET and at least one visible lesion at conventional imaging. Two independent nuclear medicine physicians evaluated pts who underwent 99mTc and 111In scans and images. The primary outcome was comparative diagnostic accuracy of 99mTc and 111In. Secondary outcomes include safety. Nine pts were included and performed 14 paired scans. Overall, 126 lesions were identified. 99mTc demonstrated superior sensitivity both when all images were analysed (93.7, 95% CI 88.1% - 96.8% versus 74.8%, 95% CI 66.6 - 81.6%, p < 0.001) and when liver-specific images were analysed (97.8%, 95% CI 92.7% - 99.5% versus 85.1%, 95% CI 76.6% - 91.0%, p < 0.001). 99mTc was also associated with a lower negative likelihood ratio (LR) (0.002, 95% CI 0.009 - 0.1 versus 0.19, 95% CI 0.12 - 0.42, p = 0.009) when evaluating hepatic lesions. Adverse events happened in 3 pts after 111In and in 2 pts after 99mTc, all grade 1. The 99mTc demonstrated a higher sensitivity overall and a better negative LR in liver-specific images compared to 111In in pts with NETs. Our findings suggest that 99mTc is an alternative to 111In and is especially useful in ruling out liver metastases. NCT02691078.

2.
J Cereb Blood Flow Metab ; 39(3): 439-453, 2019 03.
Article in English | MEDLINE | ID: mdl-29271288

ABSTRACT

Psychosocial stress is a risk factor for the development of depression. Recent evidence suggests that glial activation could contribute to the development of depressive-like behaviour. This study aimed to evaluate in vivo whether repeated social defeat (RSD) induces short- and long-term inflammatory and metabolic alterations in the brain through positron emission tomography (PET). Male Wistar rats ( n = 40) were exposed to RSD by dominant Long-Evans rats on five consecutive days. Behavioural and biochemical alterations were assessed at baseline, day 5/6 and day 24/25 after the RSD protocol. Glial activation (11C-PK11195 PET) and changes in brain metabolism (18F-FDG PET) were evaluated on day 6, 11 and 25 (short-term), and at 3 and 6 months (long-term). Defeated rats showed transient depressive- and anxiety-like behaviour, increased corticosterone and brain IL-1ß levels, as well as glial activation and brain hypometabolism in the first month after RSD. During the third- and six-month follow-up, no between-group differences in any investigated parameter were found. Therefore, non-invasive PET imaging demonstrated that RSD induces transient glial activation and reduces brain glucose metabolism in rats. These imaging findings were associated with stress-induced behavioural changes and support the hypothesis that neuroinflammation could be a contributing factor in the development of depression.


Subject(s)
Brain/metabolism , Neuroglia/metabolism , Stress, Psychological/physiopathology , Animals , Behavior, Animal/physiology , Brain/diagnostic imaging , Depression/diagnostic imaging , Depression/etiology , Inflammation/complications , Male , Positron-Emission Tomography/methods , Rats , Rats, Long-Evans , Rats, Wistar , Stress, Psychological/diagnostic imaging , Time Factors
3.
J Psychopharmacol ; 31(9): 1149-1165, 2017 09.
Article in English | MEDLINE | ID: mdl-28653857

ABSTRACT

Major depressive disorder (MDD) is a prevalent and disabling psychiatric disease with rates of non-responsiveness to antidepressants ranging from 30-50%. Historically, the monoamine depletion hypothesis has dominated the view on the pathophysiology of depression. However, the lack of responsiveness to antidepressants and treatment resistance suggests that additional mechanisms might play a role. Evidence has shown that a subgroup of depressive patients may have an underlying immune deregulation that could explain the lack of therapeutic benefit from antidepressants. Stimuli like inflammation and infection can trigger the activation of microglia to release pro-inflammatory cytokines, acting on two main pathways: (1) activation of the hypothalamic-pituitary adrenal axis, generating an imbalance in the serotonergic and noradrenergic circuits; (2) increased activity of the enzyme indoleamine-2,3-dioxygenase, resulting in depletion of serotonin levels and the production of quinolinic acid. If this hypothesis is proven true, the subgroup of MDD patients with increased levels of pro-inflammatory cytokines, mainly IL-6, TNF-α and IL-1ß, might benefit from an anti-inflammatory intervention. Here, we discuss the pre-clinical and clinical studies that have provided support for treatment with non-steroidal anti-inflammatory drugs in depressed patients with inflammatory comorbidities or an elevated immune profile, as well as evidences for anti-inflammatory properties of standard antidepressants.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Inflammation/drug therapy , Depressive Disorder, Major/metabolism , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Inflammation/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Serotonin/metabolism
4.
J Nucl Med ; 57(5): 785-91, 2016 May.
Article in English | MEDLINE | ID: mdl-26823567

ABSTRACT

(11)C-PBR28 is a second-generation translocator protein (TSPO) tracer with characteristics supposedly superior to the most commonly used tracer for neuroinflammation, (R)-(11)C-PK11195. Despite its use in clinical research, no studies on the imaging properties and pharmacokinetic analysis of (11)C-PBR28 in rodent models of neuroinflammation have been published yet. Therefore, this study aimed to evaluate (11)C-PBR28 as a tool for detection and quantification of neuroinflammation in preclinical research and to compare its imaging properties with (R)-(11)C-PK11195. The herpes simplex encephalitis (HSE) model was used for induction of neuroinflammation in male Wistar rats. Six or 7 d after virus inoculation, a dynamic (11)C-PBR28 or (R)-(11)C-PK11195 PET scan with arterial blood sampling was obtained. Pharmacokinetic modeling was performed on the PET data and analyzed using volumes of interest and a voxel-based approach. Volume-of-interest- and voxel-based analysis of (11)C-PBR28 images showed overexpression of TSPO in brain regions known to be affected in the HSE rat model. (11)C-PBR28 was metabolized faster than (R)-(11)C-PK11195, with a metabolic half-life in plasma of 5 and 21 min, respectively. Overall, (11)C-PBR28 was more sensitive than (R)-(11)C-PK11195 in detecting neuroinflammation. The binding potential (BPND) of (11)C-PBR28 was significantly higher (P < 0.05) in the medulla (176%), pons (146%), midbrain (101%), hippocampus (85%), thalamus (73%), cerebellum (54%), and hypothalamus (49%) in HSE rats than in control rats, whereas (R)-(11)C-PK11195 showed a higher BPND only in the medulla (32%). The BPND in control animals was not significantly different between tracers, suggesting that the nonspecific binding of both tracers is similar. (11)C-PBR28 was more sensitive than (R)-(11)C-PK11195 in the detection of TSPO overexpression in the HSE rat model, because more brain regions with significantly increased tracer uptake could be found, irrespective of the data analysis method used. These results suggest that (11)C-PBR28 should be able to detect more subtle changes in microglial activation in preclinical models of neuroinflammation.


Subject(s)
Encephalitis, Herpes Simplex/metabolism , Isoquinolines/pharmacokinetics , Pyrimidines/pharmacokinetics , Animals , Biological Transport , Disease Models, Animal , Encephalitis, Herpes Simplex/diagnostic imaging , Image Processing, Computer-Assisted , Isoquinolines/metabolism , Kinetics , Male , Positron-Emission Tomography , Pyrimidines/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...