Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1376, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355696

ABSTRACT

Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.


Subject(s)
Electron Microscope Tomography , Spores, Bacterial , Spores, Bacterial/genetics , Bacterial Proteins/metabolism , Microscopy, Electron, Transmission , Bacillus subtilis/metabolism
2.
Viruses ; 15(12)2023 11 22.
Article in English | MEDLINE | ID: mdl-38140530

ABSTRACT

HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.


Subject(s)
HIV-1 , HIV-1/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Virus Release/physiology
3.
bioRxiv ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37905063

ABSTRACT

HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated auto-cleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins with variable modification of Gag VLP budding upon drug administration. Notably, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted a minor effect and synergized with CHMP2A-NS3. Localization studies demonstrated the re-localization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.

4.
Ultramicroscopy ; 254: 113834, 2023 12.
Article in English | MEDLINE | ID: mdl-37666105

ABSTRACT

Electron diffraction of three-dimensional nanometer sized crystals has emerged since 2013 as an efficient technique to solve the structure of both small organic molecules and model proteins. However, the major bottleneck of the technique when applied to protein samples is to produce nano-crystals that do not exceed 200 to 300 nm in at least one dimension and to deposit them on a grid while keeping the minimum amount of solvent around them. Since the presence of amorphous solvent around the crystal, necessary to preserve its integrity, increases the amount of diffuse scattering, thus degrading the signal-to noise ratio of the diffraction signal, other sample preparation strategies have been developed. One of them is the milling of thin crystal lamella using focused ion beam (FIB), which was successfully applied to several protein crystals. Here, we present a new approach that uses cryo-sectioning after high pressure freezing of dextran embedded protein crystals. 150 to 200 nm thick cryo-sections of hen egg white lysozyme tetragonal crystals where used for electron diffraction experiments. Complete diffraction data up to 2.9 Å resolution have been collected and the lysozyme structure has been solved by molecular replacement and refined against these data. Our data demonstrate that cryo-sectioning can preserve protein structure at high resolution and can be used as a new sample preparation technique for 3D electron diffraction experiments of protein crystals. The different orientations found in the crystal chips and their large number resulting from the cryo-sectioning make the latter an attractive approach as it combines advantages from both blotting approaches (number of crystals) and FIB-milling (controlled thickness and absence of solvent around the crystal).


Subject(s)
Electrons , Muramidase , Freezing , Computer Systems , Solvents
5.
J Fungi (Basel) ; 9(4)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108947

ABSTRACT

Fungal secretomes are known to contain a multitude of components involved in nutrition, cell growth or biotic interactions. Recently, extra-cellular vesicles have been identified in a few fungal species. Here, we used a multidisciplinary approach to identify and characterize extracellular vesicles produced by the plant necrotroph Botrytis cinerea. Transmission electron microscopy of infectious hyphae and hyphae grown in vitro revealed extracellular vesicles of various sizes and densities. Electron tomography showed the co-existence of ovoid and tubular vesicles and pointed to their release via the fusion of multi-vesicular bodies with the cell plasma membrane. The isolation of these vesicles and exploration of their protein content using mass spectrometry led to the identification of soluble and membrane proteins involved in transport, metabolism, cell wall synthesis and remodeling, proteostasis, oxidoreduction and traffic. Confocal microscopy highlighted the capacity of fluorescently labeled vesicles to target cells of B. cinerea, cells of the fungus Fusarium graminearum, and onion epidermal cells but not yeast cells. In addition, a specific positive effect of these vesicles on the growth of B. cinerea was quantified. Altogether, this study broadens our view on the secretion capacity of B. cinerea and its cell-to-cell communication.

6.
PLoS Pathog ; 19(1): e1011023, 2023 01.
Article in English | MEDLINE | ID: mdl-36696456

ABSTRACT

Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.


Subject(s)
Anti-Bacterial Agents , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Complement System Proteins , Complement Membrane Attack Complex
7.
Nat Commun ; 13(1): 5502, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127320

ABSTRACT

Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.


Subject(s)
Adenosine Triphosphatases , Aminoglycosides , Escherichia coli Proteins , Escherichia coli , Adenosine Triphosphatases/metabolism , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , ATPases Associated with Diverse Cellular Activities/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Fumarates , Gentamicins , Membrane Lipids , Oxygen/metabolism , Phospholipids
8.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35564134

ABSTRACT

Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.

9.
Nat Commun ; 12(1): 1049, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594064

ABSTRACT

Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.


Subject(s)
Energy Metabolism , Imaging, Three-Dimensional , Phytoplankton/cytology , Phytoplankton/physiology , Acclimatization/radiation effects , Energy Metabolism/radiation effects , Light , Microalgae/metabolism , Microalgae/radiation effects , Microalgae/ultrastructure , Mitochondria/metabolism , Mitochondria/radiation effects , Mitochondria/ultrastructure , Phytoplankton/radiation effects , Phytoplankton/ultrastructure , Plastids/metabolism , Subcellular Fractions/metabolism
10.
Front Toxicol ; 3: 636976, 2021.
Article in English | MEDLINE | ID: mdl-35295141

ABSTRACT

Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive. This has prompted the development of safer alternatives to Cd-based QDs; among them, InP QDs are the most promising ones. We recently developed RoHS-compliant QDs with an alloyed core composed of InZnP coated with a Zn(Se,S) gradient shell, which was further coated with an additional ZnS shell to protect the QDs from oxidative surface degradation. In this study, the toxicity of single-shelled InZnP/Zn(Se,S) core/gradient shell and of double-shelled InZnP/Zn(Se,S)/ZnS core/shell/shell QDs was evaluated both in their pristine form and after aging in a climatic chamber, mimicking a realistic environmental weathering. We show that both pristine and aged QDs, whatever their composition, accumulate in the cytoplasm of human primary keratinocytes where they form agglomerates at the vicinity of the nucleus. Pristine QDs do not show overt toxicity to cells, while aged QDs show cytotoxicity and genotoxicity and significantly modulate the mRNA expression of proteins involved in zinc homeostasis, cell redox response, and inflammation. While the three aged QDs show similar toxicity, the toxicity of pristine gradient-shell QD is higher than that of pristine double-shell QD, confirming that adding a second shell is a promising safer-by-design strategy. Taken together, these results suggest that end-of-life degradation products from InP-based QDs are detrimental to skin cells in case of accidental exposure and that the mechanisms driving this effect are oxidative stress, inflammation, and disturbance of cell metal homeostasis, particularly Zn homeostasis. Further efforts to promote safer-by-design formulations of QDs, for instance by reducing the In and Zn content and/or implementing a more robust outer shell, are therefore warranted.

11.
Cell Microbiol ; 22(11): e13251, 2020 11.
Article in English | MEDLINE | ID: mdl-32779854

ABSTRACT

During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase-1, which in turn triggers macrophage pyroptosis and IL-1ß/IL-18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore-forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase-11 activation. Surprisingly, previous studies indicated that a T3SS-induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS-negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore-forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll-like receptors, and thus enhanced the expression of inflammatory proteins including pro-IL-1ß and TNF-α. However, mature-IL-1ß and IL-18 were undetectable in wild-type mice, suggesting that ExlA failed to effectively activate caspase-1. Nevertheless, caspase-1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA-induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome-dependent process.


Subject(s)
Inflammasomes/immunology , Leukocidins/toxicity , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Animals , Cytokines/biosynthesis , Inflammasomes/metabolism , Inflammation , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Lung/immunology , Lung/microbiology , Macrophages/immunology , Macrophages/metabolism , Mice , Neutrophil Infiltration , Peptide Fragments/metabolism , Pseudomonas aeruginosa/growth & development , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/metabolism , Type III Secretion Systems , Virulence
12.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354127

ABSTRACT

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


Subject(s)
Coliphages/ultrastructure , Viral Proteins/chemistry , Viral Proteins/metabolism , Coliphages/genetics , Coliphages/metabolism , Cryoelectron Microscopy , Genome Size , Molecular Structure , Tandem Mass Spectrometry , Viral Genome Packaging , Viral Proteins/genetics , Virion/chemistry , Virion/metabolism
13.
Nanomaterials (Basel) ; 10(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033329

ABSTRACT

Iron oxide nanoparticles/microparticles are widely present in a variety of environments, e.g., as a byproduct of steel and iron degradation, as, for example, in railway brakes (e.g., metro station) or in welding fumes. As all particulate material, these metallic nanoparticles are taken up by macrophages, a cell type playing a key role in the innate immune response, including pathogen removal phagocytosis, secretion of free radical species such as nitric oxide or by controlling inflammation via cytokine release. In this paper, we evaluated how macrophages functions were altered by two iron based particles of different size (100 nm and 20 nm). We showed that at high, but subtoxic concentrations (1 mg/mL, large nanoparticles induced stronger perturbations in macrophages functions such as phagocytic capacity (tested with fluorescent latex microspheres) and the ability to respond to bacterial endotoxin lipopolysaccharide stimulus (LPS) in secreting nitric oxide and pro-cytokines (e.g., Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)). These stronger effects may correlate with an observed stronger uptake of iron for the larger nanoparticles.

14.
Nanomaterials (Basel) ; 9(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30583592

ABSTRACT

Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO2 Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO2 Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO2) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.

15.
Sci Adv ; 4(9): eaau4196, 2018 09.
Article in English | MEDLINE | ID: mdl-30255156

ABSTRACT

Chaperonins are ubiquitous protein assemblies present in bacteria, eukaryota, and archaea, facilitating the folding of proteins, preventing protein aggregation, and thus participating in maintaining protein homeostasis in the cell. During their functional cycle, they bind unfolded client proteins inside their double ring structure and promote protein folding by closing the ring chamber in an adenosine 5'-triphosphate (ATP)-dependent manner. Although the static structures of fully open and closed forms of chaperonins were solved by x-ray crystallography or electron microscopy, elucidating the mechanisms of such ATP-driven molecular events requires studying the proteins at the structural level under working conditions. We introduce an approach that combines site-specific nuclear magnetic resonance observation of very large proteins, enabled by advanced isotope labeling methods, with an in situ ATP regeneration system. Using this method, we provide functional insight into the 1-MDa large hsp60 chaperonin while processing client proteins and reveal how nucleotide binding, hydrolysis, and release control switching between closed and open states. While the open conformation stabilizes the unfolded state of client proteins, the internalization of the client protein inside the chaperonin cavity speeds up its functional cycle. This approach opens new perspectives to study structures and mechanisms of various ATP-driven biological machineries in the heat of action.


Subject(s)
Chaperonin 60/chemistry , Chaperonin 60/metabolism , Group II Chaperonins/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Chaperonin 60/genetics , Group II Chaperonins/metabolism , Malate Synthase/chemistry , Malate Synthase/metabolism , Muramidase/chemistry , Muramidase/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protein Unfolding , Pyrococcus horikoshii/chemistry
16.
Methods Mol Biol ; 1829: 113-122, 2018.
Article in English | MEDLINE | ID: mdl-29987717

ABSTRACT

Internal chloroplast structures present complex and various characteristics, which are still largely undetermined due to insufficient imaging investigation. Information on chloroplast morphology has traditionally been collected using light microscopy (LM), confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. However, recent technological progresses in the field of microscopy have made it possible to visualize the internal structure of chloroplast in far greater detail and in 3D. Here we recapitulate protocols to visualize chloroplasts from Arabidopsis leaves and Phaeodactylum tricornutum cells with confocal and transmission electron microscopy together with a new technique using a focused ion beam-scanning electron microscope (FIB-SEM) allowing for 3D imaging.


Subject(s)
Plastids/metabolism , Plastids/ultrastructure , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Imaging, Three-Dimensional , Microscopy, Confocal , Microscopy, Electron , Molecular Imaging
17.
Mol Microbiol ; 106(5): 832-846, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28960579

ABSTRACT

The peptidoglycan is a rigid matrix required to resist turgor pressure and to maintain the cellular shape. It is formed by linear glycan chains composed of N-acetylmuramic acid-(ß-1,4)-N-acetylglucosamine (MurNAc-GlcNAc) disaccharides associated through cross-linked peptide stems. The peptidoglycan is continually remodelled by synthetic and hydrolytic enzymes and by chemical modifications, including O-acetylation of MurNAc residues that occurs in most Gram-positive and Gram-negative bacteria. This modification is a powerful strategy developed by pathogens to resist to lysozyme degradation and thus to escape from the host innate immune system but little is known about its physiological function. In this study, we have investigated to what extend peptidoglycan O-acetylation is involved in cell wall biosynthesis and cell division of Streptococcus pneumoniae. We show that O-acetylation driven by Adr protects the peptidoglycan of dividing cells from cleavage by the major autolysin LytA and occurs at the septal site. Our results support a function for Adr in the formation of robust and mature MurNAc O-acetylated peptidoglycan and infer its role in the division of the pneumococcus.


Subject(s)
Cell Wall/metabolism , Peptidoglycan/metabolism , Streptococcus pneumoniae/metabolism , Acetylation , Acetylglucosamine/metabolism , Cell Division , Gram-Negative Bacteria/metabolism , Muramic Acids/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism
18.
Nat Commun ; 8: 15885, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28631733

ABSTRACT

Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.


Subject(s)
Diatoms/physiology , Photosynthesis/physiology , Plastids/metabolism , Thylakoids/metabolism , Chloroplasts/metabolism , Diatoms/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism
19.
Sci Adv ; 3(4): e1601601, 2017 04.
Article in English | MEDLINE | ID: mdl-28435872

ABSTRACT

The spontaneous formation of biological higher-order structures from smaller building blocks, called self-assembly, is a fundamental attribute of life. Although the protein self-assembly is a time-dependent process that occurs at the molecular level, its current understanding originates either from static structures of trapped intermediates or from modeling. Nuclear magnetic resonance (NMR) spectroscopy has the unique ability to monitor structural changes in real time; however, its size limitation and time-resolution constraints remain a challenge when studying the self-assembly of large biological particles. We report the application of methyl-specific isotopic labeling combined with relaxation-optimized NMR spectroscopy to overcome both size- and time-scale limitations. We report for the first time the self-assembly process of a half-megadalton protein complex that was monitored at the structural level, including the characterization of intermediate states, using a mutagenesis-free strategy. NMR was used to obtain individual kinetics data on the different transient intermediates and the formation of final native particle. In addition, complementary time-resolved electron microscopy and native mass spectrometry were used to characterize the low-resolution structures of oligomerization intermediates.


Subject(s)
Archaeal Proteins/chemistry , Peptide Hydrolases/chemistry , Protein Multimerization , Pyrococcus horikoshii/enzymology , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary
20.
mBio ; 6(4)2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26286692

ABSTRACT

UNLABELLED: Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring's morphology during the division cycle at the nanoscale level. We show that changes in the ring's axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. IMPORTANCE: The Gram-positive human pathogen S. pneumoniae is responsible for 1.6 million deaths per year worldwide and is increasingly resistant to various antibiotics. FtsZ is a cytoskeletal protein polymerizing at midcell into a ring-like structure called the Z-ring. FtsZ is a promising new antimicrobial target, as its inhibition leads to cell death. A precise view of the Z-ring architecture in vivo is essential to understand the mode of action of inhibitory drugs (see T. den Blaauwen, J. M. Andreu, and O. Monasterio, Bioorg Chem 55:27-38, 2014, doi:10.1016/j.bioorg.2014.03.007, for a review on FtsZ inhibitors). This is notably true in ovococcoid bacteria like S. pneumoniae, in which FtsZ is the only known cytoskeletal protein. We have used superresolution microscopy to obtain molecular details of the pneumococcus Z-ring that have so far been inaccessible with conventional microscopy. This study provides a nanoscale description of the Z-ring architecture and remodeling during the division of ovococci.


Subject(s)
Bacterial Proteins/ultrastructure , Cytoskeletal Proteins/ultrastructure , Nanostructures/ultrastructure , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Cycle , Cell Division , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Fluorescent Dyes , Microscopy, Fluorescence/methods , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...