Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
PLoS One ; 19(1): e0288233, 2024.
Article in English | MEDLINE | ID: mdl-38285704

ABSTRACT

OBJECTIVE: To assess the single site performance of the Dynamic Criticality Index (CI-D) models developed from a multi-institutional database to predict future care. Secondarily, to assess future care-location predictions in a single institution when CI-D models are re-developed using single-site data with identical variables and modeling methods. Four CI-D models were assessed for predicting care locations >6-12 hours, >12-18 hours, >18-24 hours, and >24-30 hours in the future. DESIGN: Prognostic study comparing multi-institutional CI-D models' performance in a single-site electronic health record dataset to an institution-specific CI-D model developed using identical variables and modelling methods. The institution did not participate in the multi-institutional dataset. PARTICIPANTS: All pediatric inpatients admitted from January 1st 2018 -February 29th 2020 through the emergency department. MAIN OUTCOME(S) AND MEASURE(S): The main outcome was inpatient care in routine or ICU care locations. RESULTS: A total of 29,037 pediatric hospital admissions were included, with 5,563 (19.2%) admitted directly to the ICU, 869 (3.0%) transferred from routine to ICU care, and 5,023 (17.3%) transferred from ICU to routine care. Patients had a median [IQR] age 68 months (15-157), 47.5% were female and 43.4% were black. The area under the receiver operating characteristic curve (AUROC) for the multi-institutional CI-D models applied to a single-site test dataset was 0.493-0.545 and area under the precision-recall curve (AUPRC) was 0.262-0.299. The single-site CI-D models applied to an independent single-site test dataset had an AUROC 0.906-0.944 and AUPRC range from 0.754-0.824. Accuracy at 0.95 sensitivity for those transferred from routine to ICU care was 72.6%-81.0%. Accuracy at 0.95 specificity was 58.2%-76.4% for patients who transferred from ICU to routine care. CONCLUSION AND RELEVANCE: Models developed from multi-institutional datasets and intended for application to individual institutions should be assessed locally and may benefit from re-development with site-specific data prior to deployment.


Subject(s)
Hospitalization , Intensive Care Units , Humans , Child , Female , Child, Preschool , Male , Forecasting , Prognosis , Machine Learning , Retrospective Studies
2.
Immunology ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148520

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is a primarily epithelial-derived cytokine that drives type 2 allergic immune responses. Early life viral respiratory infections elicit high TSLP production, which leads to the development of type 2 inflammation and airway hyperreactivity. The goal of this study was to examine in vivo and in vitro the human airway epithelial responses leading to high TSLP production during viral respiratory infections in early infancy. A total of 129 infants (<1-24 m, median age 10 m) with severe viral respiratory infections were enrolled for in vivo (n = 113), and in vitro studies (n = 16). Infants were classified as 'high TSLP' or 'low TSLP' for values above or below the 50th percentile. High versus low TSLP groups were compared in terms of type I-III IFN responses and production of chemokines promoting antiviral (CXCL10), neutrophilic (CXCL1, CXCL5, CXCL8), and type 2 responses (CCL11, CCL17, CCL22). Human infant airway epithelial cell (AEC) cultures were used to define the transcriptomic (RNAseq) profile leading to high versus low TSLP responses in vitro in the absence (baseline) or presence (stimulated) of a viral mimic (poly I:C). Infants in the high TSLP group had greater in vivo type III IFN airway production (median type III IFN in high TSLP 183.2 pg/mL vs. 63.4 pg/mL in low TSLP group, p = 0.007) and increased in vitro type I-III IFN AEC responses after stimulation with a viral mimic (poly I:C). At baseline, our RNAseq data showed that infants in the high TSLP group had significant upregulation of IFN signature genes (e.g., IFIT2, IFI6, MX1) and pro-inflammatory chemokine genes before stimulation. Infants in the high TSLP group also showed a baseline AEC pro-inflammatory state characterized by increased production of all the chemokines assayed (e.g., CXCL10, CXCL8). High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity and increased baseline AEC production of pro-inflammatory chemokines. These findings present a new paradigm underlying the production of TSLP in the human infant airway epithelium following early life viral exposure and shed light on the long-term impact of viral respiratory illnesses during early infancy and beyond childhood.

3.
J Inherit Metab Dis ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37847851

ABSTRACT

Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.

4.
PLoS One ; 18(8): e0289774, 2023.
Article in English | MEDLINE | ID: mdl-37561683

ABSTRACT

As clinical understanding of pediatric Post-Acute Sequelae of SARS CoV-2 (PASC) develops, and hence the clinical definition evolves, it is desirable to have a method to reliably identify patients who are likely to have post-acute sequelae of SARS CoV-2 (PASC) in health systems data. In this study, we developed and validated a machine learning algorithm to classify which patients have PASC (distinguishing between Multisystem Inflammatory Syndrome in Children (MIS-C) and non-MIS-C variants) from a cohort of patients with positive SARS- CoV-2 test results in pediatric health systems within the PEDSnet EHR network. Patient features included in the model were selected from conditions, procedures, performance of diagnostic testing, and medications using a tree-based scan statistic approach. We used an XGboost model, with hyperparameters selected through cross-validated grid search, and model performance was assessed using 5-fold cross-validation. Model predictions and feature importance were evaluated using Shapley Additive exPlanation (SHAP) values. The model provides a tool for identifying patients with PASC and an approach to characterizing PASC using diagnosis, medication, laboratory, and procedure features in health systems data. Using appropriate threshold settings, the model can be used to identify PASC patients in health systems data at higher precision for inclusion in studies or at higher recall in screening for clinical trials, especially in settings where PASC diagnosis codes are used less frequently or less reliably. Analysis of how specific features contribute to the classification process may assist in gaining a better understanding of features that are associated with PASC diagnoses.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Child , Humans , COVID-19/diagnosis , SARS-CoV-2 , Disease Progression , Machine Learning , Phenotype
5.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146589

ABSTRACT

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Ornithine Carbamoyltransferase , Humans , Amino Acid Substitution , Hyperammonemia/etiology , Hyperammonemia/genetics , Mutation, Missense/genetics , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/therapy
6.
Pediatr Crit Care Med ; 24(9): e425-e433, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37114925

ABSTRACT

OBJECTIVES: Test the hypothesis that within patient clinical instability measured by deterioration and improvement in mortality risk over 3-, 6-, 9-, and 12-hour time intervals is indicative of increasing severity of illness. DESIGN: Analysis of electronic health data from January 1, 2018, to February 29, 2020. SETTING: PICU and cardiac ICU at an academic children's hospital. PATIENTS: All PICU patients. Data included descriptive information, outcome, and independent variables used in the Criticality Index-Mortality. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: There were 8,399 admissions with 312 deaths (3.7%). Mortality risk determined every three hours using the Criticality Index-Mortality, a machine learning algorithm calibrated to this hospital. Since the sample sizes were sufficiently large to expect statical differences, we also used two measures of effect size, the proportion of time deaths had greater instability than survivors, and the rank-biserial correlation, to assess the magnitude of the effect and complement our hypothesis tests. Within patient changes were compared for survivors and deaths. All comparisons of survivors versus deaths were less than 0.001. For all time intervals, two measures of effect size indicated that the differences between deaths and survivors were not clinically important. However, the within-patient maximum risk increase (clinical deterioration) and maximum risk decrease (clinical improvement) were both substantially greater in deaths than survivors for all time intervals. For deaths, the maximum risk increase ranged from 11.1% to 16.1% and the maximum decrease ranged from -7.3% to -10.0%, while the median maximum increases and decreases for survivors were all less than ± 0.1%. Both measures of effect size indicated moderate to high clinical importance. The within-patient volatility was greater than 4.5-fold greater in deaths than survivors during the first ICU day, plateauing at ICU days 4-5 at 2.5 greater volatility. CONCLUSIONS: Episodic clinical instability measured with mortality risk is a reliable sign of increasing severity of illness. Mortality risk changes during four time intervals demonstrated deaths have greater maximum and within-patient clinical instability than survivors. This observation confirms the clinical teaching that clinical instability is a sign of severity of illness.


Subject(s)
Hospitalization , Intensive Care Units , Child , Humans , Cohort Studies , Hospitals , Patient Acuity
7.
Front Pediatr ; 10: 1023539, 2022.
Article in English | MEDLINE | ID: mdl-36533242

ABSTRACT

Background: The Criticality Index-Mortality uses physiology, therapy, and intensity of care to compute mortality risk for pediatric ICU patients. If the frequency of mortality risk computations were increased to every 3 h with model performance that could improve the assessment of severity of illness, it could be utilized to monitor patients for significant mortality risk change. Objectives: To assess the performance of a dynamic method of updating mortality risk every 3 h using the Criticality Index-Mortality methodology and identify variables that are significant contributors to mortality risk predictions. Population: There were 8,399 pediatric ICU admissions with 312 (3.7%) deaths from January 1, 2018 to February 29, 2020. We randomly selected 75% of patients for training, 13% for validation, and 12% for testing. Model: A neural network was trained to predict hospital survival or death during or following an ICU admission. Variables included age, gender, laboratory tests, vital signs, medications categories, and mechanical ventilation variables. The neural network was calibrated to mortality risk using nonparametric logistic regression. Results: Discrimination assessed across all time periods found an AUROC of 0.851 (0.841-0.862) and an AUPRC was 0.443 (0.417-0.467). When assessed for performance every 3 h, the AUROCs had a minimum value of 0.778 (0.689-0.867) and a maximum value of 0.885 (0.841,0.862); the AUPRCs had a minimum value 0.148 (0.058-0.328) and a maximum value of 0.499 (0.229-0.769). The calibration plot had an intercept of 0.011, a slope of 0.956, and the R2 was 0.814. Comparison of observed vs. expected proportion of deaths revealed that 95.8% of the 543 risk intervals were not statistically significantly different. Construct validity assessed by death and survivor risk trajectories analyzed by mortality risk quartiles and 7 high and low risk diseases confirmed a priori clinical expectations about the trajectories of death and survivors. Conclusions: The Criticality Index-Mortality computing mortality risk every 3 h for pediatric ICU patients has model performance that could enhance the clinical assessment of severity of illness. The overall Criticality Index-Mortality framework was effectively applied to develop an institutionally specific, and clinically relevant model for dynamic risk assessment of pediatric ICU patients.

8.
JAMA Netw Open ; 5(5): e2211967, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35579899

ABSTRACT

Importance: Identifying the associations between severe COVID-19 and individual cardiovascular conditions in pediatric patients may inform treatment. Objective: To assess the association between previous or preexisting cardiovascular conditions and severity of COVID-19 in pediatric patients. Design, Setting, and Participants: This retrospective cohort study used data from a large, multicenter, electronic health records database in the US. The cohort included patients aged 2 months to 17 years with a laboratory-confirmed diagnosis of COVID-19 or a diagnosis code indicating infection or exposure to SARS-CoV-2 at 85 health systems between March 1, 2020, and January 31, 2021. Exposures: Diagnoses for 26 cardiovascular conditions between January 1, 2015, and December 31, 2019 (before infection with SARS-CoV-2). Main Outcomes and Measures: The main outcome was severe COVID-19, defined as need for supplemental oxygen or in-hospital death. Mixed-effects, random intercept logistic regression modeling assessed the significance and magnitude of associations between 26 cardiovascular conditions and COVID-19 severity. Multiple comparison adjustment was performed using the Benjamini-Hochberg false discovery rate procedure. Results: The study comprised 171 416 pediatric patients; the median age was 8 years (IQR, 2-14 years), and 50.28% were male. Of these patients, 17 065 (9.96%) had severe COVID-19. The random intercept model showed that the following cardiovascular conditions were associated with severe COVID-19: cardiac arrest (odds ratio [OR], 9.92; 95% CI, 6.93-14.20), cardiogenic shock (OR, 3.07; 95% CI, 1.90-4.96), heart surgery (OR, 3.04; 95% CI, 2.26-4.08), cardiopulmonary disease (OR, 1.91; 95% CI, 1.56-2.34), heart failure (OR, 1.82; 95% CI, 1.46-2.26), hypotension (OR, 1.57; 95% CI, 1.38-1.79), nontraumatic cerebral hemorrhage (OR, 1.54; 95% CI, 1.24-1.91), pericarditis (OR, 1.50; 95% CI, 1.17-1.94), simple biventricular defects (OR, 1.45; 95% CI, 1.29-1.62), venous embolism and thrombosis (OR, 1.39; 95% CI, 1.11-1.73), other hypertensive disorders (OR, 1.34; 95% CI, 1.09-1.63), complex biventricular defects (OR, 1.33; 95% CI, 1.14-1.54), and essential primary hypertension (OR, 1.22; 95% CI, 1.08-1.38). Furthermore, 194 of 258 patients (75.19%) with a history of cardiac arrest were younger than 12 years. Conclusions and Relevance: The findings suggest that some previous or preexisting cardiovascular conditions are associated with increased severity of COVID-19 among pediatric patients in the US and that morbidity may be increased among individuals children younger than 12 years with previous cardiac arrest.


Subject(s)
COVID-19 , Heart Arrest , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Female , Heart Arrest/epidemiology , Hospital Mortality , Humans , Male , Retrospective Studies , SARS-CoV-2
9.
J Neurodev Disord ; 14(1): 24, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35321655

ABSTRACT

BACKGROUND: Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington. METHODS: A combination of billing codes from the International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) for diagnostic criteria postulated by a research team at Cleveland Clinic was used to identify patient cohorts for genetic testing from the clinical data warehouses at the three research centers. Subsequently, the EHR-including billing codes, clinical notes, and genetic reports-of these patients were reviewed by clinical experts to identify patients with PHTS. RESULTS: The PTEN genetic testing yield of the computational phenotype, the number of patients who needed to be genetically tested for incidence of pathogenic PTEN gene variants, ranged from 82 to 94% at the three centers. CONCLUSIONS: Computational phenotypes have the potential to enable the timely and accurate diagnosis of rare genetic diseases such as PHTS by identifying patient cohorts for genetic sequencing and testing.


Subject(s)
Genetic Testing , Hamartoma Syndrome, Multiple , Electronic Health Records , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Humans , PTEN Phosphohydrolase/genetics , Phenotype
10.
Pediatr Crit Care Med ; 23(5): 344-352, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35190501

ABSTRACT

OBJECTIVES: Assess a machine learning method of serially updated mortality risk. DESIGN: Retrospective analysis of a national database (Health Facts; Cerner Corporation, Kansas City, MO). SETTING: Hospitals caring for children in ICUs. PATIENTS: A total of 27,354 admissions cared for in ICUs from 2009 to 2018. INTERVENTIONS: None. MAIN OUTCOME: Hospital mortality risk estimates determined at 6-hour time periods during care in the ICU. Models were truncated at 180 hours due to decreased sample size secondary to discharges and deaths. MEASUREMENTS AND MAIN RESULTS: The Criticality Index, based on physiology, therapy, and care intensity, was computed for each admission for each time period and calibrated to hospital mortality risk (Criticality Index-Mortality [CI-M]) at each of 29 time periods (initial assessment: 6 hr; last assessment: 180 hr). Performance metrics and clinical validity were determined from the held-out test sample (n = 3,453, 13%). Discrimination assessed with the area under the receiver operating characteristic curve was 0.852 (95% CI, 0.843-0.861) overall and greater than or equal to 0.80 for all individual time periods. Calibration assessed by the Hosmer-Lemeshow goodness-of-fit test showed good fit overall (p = 0.196) and was statistically not significant for 28 of the 29 time periods. Calibration plots for all models revealed the intercept ranged from--0.002 to 0.009, the slope ranged from 0.867 to 1.415, and the R2 ranged from 0.862 to 0.989. Clinical validity assessed using population trajectories and changes in the risk status of admissions (clinical volatility) revealed clinical trajectories consistent with clinical expectations and greater clinical volatility in deaths than survivors (p < 0.001). CONCLUSIONS: Machine learning models incorporating physiology, therapy, and care intensity can track changes in hospital mortality risk during intensive care. The CI-M's framework and modeling method are potentially applicable to monitoring clinical improvement and deterioration in real time.


Subject(s)
Intensive Care Units , Machine Learning , Child , Hospital Mortality , Humans , ROC Curve , Retrospective Studies
11.
JAMIA Open ; 5(1): ooab120, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35047761

ABSTRACT

Aggregate de-identified data from electronic health records (EHRs) provide a valuable resource for research. The Standardized Health data and Research Exchange (SHaRE) is a diverse group of US healthcare organizations contributing to the Cerner Health Facts (HF) and Cerner Real-World Data (CRWD) initiatives. The 51 facilities at the 7 founding organizations have provided data about more than 4.8 million patients with 63 million encounters to HF and 7.4 million patients and 119 million encounters to CRWD. SHaRE organizations unmask their organization IDs and provide 3-digit zip code (zip3) data to support epidemiology and disparity research. SHaRE enables communication between members, facilitating data validation and collaboration as we demonstrate by comparing imputed EHR module usage to actual usage. Unlike other data sharing initiatives, no additional technology installation is required. SHaRE establishes a foundation for members to engage in discussions that bridge data science research and patient care, promoting the learning health system.

12.
medRxiv ; 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36597534

ABSTRACT

Background: As clinical understanding of pediatric Post-Acute Sequelae of SARS CoV-2 (PASC) develops, and hence the clinical definition evolves, it is desirable to have a method to reliably identify patients who are likely to have post-acute sequelae of SARS CoV-2 (PASC) in health systems data. Methods and Findings: In this study, we developed and validated a machine learning algorithm to classify which patients have PASC (distinguishing between Multisystem Inflammatory Syndrome in Children (MIS-C) and non-MIS-C variants) from a cohort of patients with positive SARS-CoV-2 test results in pediatric health systems within the PEDSnet EHR network. Patient features included in the model were selected from conditions, procedures, performance of diagnostic testing, and medications using a tree-based scan statistic approach. We used an XGboost model, with hyperparameters selected through cross-validated grid search, and model performance was assessed using 5-fold cross-validation. Model predictions and feature importance were evaluated using Shapley Additive exPlanation (SHAP) values. Conclusions: The model provides a tool for identifying patients with PASC and an approach to characterizing PASC using diagnosis, medication, laboratory, and procedure features in health systems data. Using appropriate threshold settings, the model can be used to identify PASC patients in health systems data at higher precision for inclusion in studies or at higher recall in screening for clinical trials, especially in settings where PASC diagnosis codes are used less frequently or less reliably. Analysis of how specific features contribute to the classification process may assist in gaining a better understanding of features that are associated with PASC diagnoses. Funding Source: This research was funded by the National Institutes of Health (NIH) Agreement OT2HL161847-01 as part of the Researching COVID to Enhance Recovery (RECOVER) program of research. Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the RECOVER Program, the NIH or other funders.

13.
Crit Care Explor ; 3(8): e0505, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34396143

ABSTRACT

Develop and compare separate prediction models for ICU and non-ICU care for hospitalized children in four future time periods (6-12, 12-18, 18-24, and 24-30 hr) and assess these models in an independent cohort and simulated children's hospital. DESIGN: Predictive modeling used cohorts from the Health Facts database (Cerner Corporation, Kansas City, MO). SETTING: Children hospitalized in ICUs. PATIENTS: Children with greater than or equal to one ICU admission (n = 20,014) and randomly selected routine care children without ICU admission (n = 20,130) from 2009 to 2016 were used for model development and validation. An independent 2017-2018 cohort consisted of 80,089 children. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Initially, we undersampled non-ICU patients for development and comparison of the models. We randomly assigned 64% of patients for training, 8% for validation, and 28% for testing in both clinical groups. Two additional validation cohorts were tested: a simulated children's hospitals and the 2017-2018 cohort. The main outcome was ICU care or non-ICU care in four future time periods based on physiology, therapy, and care intensity. Four independent, sequential, and fully connected neural networks were calibrated to risk of ICU care at each time period. Performance for all models in the test sample were comparable including sensitivity greater than or equal to 0.727, specificity greater than or equal to 0.885, accuracy greater than 0.850, area under the receiver operating characteristic curves greater than or equal to 0.917, and all had excellent calibration (all R2 s > 0.98). Model performance in the 2017-2018 cohort was sensitivity greater than or equal to 0.545, specificity greater than or equal to 0.972, accuracy greater than or equal to 0.921, area under the receiver operating characteristic curves greater than or equal to 0.946, and R2 s greater than or equal to 0.979. Performance metrics were comparable for the simulated children's hospital and for hospitals stratified by teaching status, bed numbers, and geographic location. CONCLUSIONS: Machine learning models using physiology, therapy, and care intensity predicting future care needs had promising performance metrics. Notably, performance metrics were similar as the prediction time periods increased from 6-12 hours to 24-30 hours.

14.
Pediatr Crit Care Med ; 22(1): e19-e32, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32932405

ABSTRACT

OBJECTIVES: To assess severity of illness trajectories described by the Criticality Index for survivors and deaths in five patient groups defined by the sequence of patient care in ICU and routine patient care locations. DESIGN: The Criticality Index developed using a calibrated, deep neural network, measures severity of illness using physiology, therapies, and therapeutic intensity. Criticality Index values in sequential 6-hour time periods described severity trajectories. SETTING: Hospitals with pediatric inpatient and ICU care. PATIENTS: Pediatric patients never cared for in an ICU (n = 20,091), patients only cared for in the ICU (n = 2,096) and patients cared for in both ICU and non-ICU care locations (n = 17,023) from 2009 to 2016 Health Facts database (Cerner Corporation, Kansas City, MO). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Criticality Index values were consistent with clinical experience. The median (25-75th percentile) ICU Criticality Index values (0.878 [0.696-0.966]) were more than 80-fold higher than the non-ICU values (0.010 [0.002-0.099]). Non-ICU Criticality Index values for patients transferred to the ICU were 40-fold higher than those never transferred to the ICU (0.164 vs 0.004). The median for ICU deaths was higher than ICU survivors (0.983 vs 0.875) (p < 0.001). The severity trajectories for the five groups met expectations based on clinical experience. Survivors had increasing Criticality Index values in non-ICU locations prior to ICU admission, decreasing Criticality Index values in the ICU, and decreasing Criticality Index values until hospital discharge. Deaths had higher Criticality Index values than survivors, steeper increases prior to the ICU, and worsening values in the ICU. Deaths had a variable course, especially those who died in non-ICU care locations, consistent with deaths associated with both active therapies and withdrawals/limitations of care. CONCLUSIONS: Severity trajectories measured by the Criticality Index showed strong validity, reflecting the expected clinical course for five diverse patient groups.


Subject(s)
Inpatients , Patient Discharge , Child , Hospitalization , Humans , Intensive Care Units , Severity of Illness Index , Survivors
15.
Pediatr Crit Care Med ; 22(1): e33-e43, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32932406

ABSTRACT

OBJECTIVES: To validate the conceptual framework of "criticality," a new pediatric inpatient severity measure based on physiology, therapy, and therapeutic intensity calibrated to care intensity, operationalized as ICU care. DESIGN: Deep neural network analysis of a pediatric cohort from the Health Facts (Cerner Corporation, Kansas City, MO) national database. SETTING: Hospitals with pediatric routine inpatient and ICU care. PATIENTS: Children cared for in the ICU (n = 20,014) and in routine care units without an ICU admission (n = 20,130) from 2009 to 2016. All patients had laboratory, vital sign, and medication data. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A calibrated, deep neural network used physiology (laboratory tests and vital signs), therapy (medications), and therapeutic intensity (number of physiology tests and medications) to model care intensity, operationalized as ICU (versus routine) care every 6 hours of a patient's hospital course. The probability of ICU care is termed the Criticality Index. First, the model demonstrated excellent separation of criticality distributions from a severity hierarchy of five patient groups: routine care, routine care for those who also received ICU care, transition from routine to ICU care, ICU care, and high-intensity ICU care. Second, model performance assessed with statistical metrics was excellent with an area under the curve for the receiver operating characteristic of 0.95 for 327,189 6-hour time periods, excellent calibration, sensitivity of 0.817, specificity of 0.892, accuracy of 0.866, and precision of 0.799. Third, the performance in individual patients with greater than one care designation indicated as 88.03% (95% CI, 87.72-88.34) of the Criticality Indices in the more intensive locations was higher than the less intense locations. CONCLUSIONS: The Criticality Index is a quantification of severity of illness for hospitalized children using physiology, therapy, and care intensity. This new conceptual model is applicable to clinical investigations and predicting future care needs.


Subject(s)
Child, Hospitalized , Intensive Care Units , Child , Hospital Mortality , Humans , ROC Curve , Severity of Illness Index
16.
Pediatr Crit Care Med ; 21(9): e679-e685, 2020 09.
Article in English | MEDLINE | ID: mdl-32569241

ABSTRACT

OBJECTIVE: To examine medication administration records through electronic health record data to provide a broad description of the pharmaceutical exposure of critically ill children. DESIGN: Retrospective cohort study using the Cerner Health Facts database. SETTING: United States. PATIENTS: A total of 43,374 children 7 days old to less than 22 years old receiving intensive care with available pharmacy data. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 907,440 courses of 1,080 unique medications were prescribed with a median of nine medications (range, 1-99; 25-75th percentile, 5-16) per patient. The most common medications were acetaminophen, ondansetron, and morphine. Only 45 medications (4.2%) were prescribed to more than 5% of patients, and these accounted for 442,067 (48.7%) of the total courses of medications. Each additional medication was associated with increased univariate risk of mortality (odds ratio, 1.05; 95% CI, 1.05-1.06; p < 0.001). CONCLUSIONS: Children receiving intensive care receive a median of nine medications per patient and one quarter are prescribed at least than 16 medications. Only 45 medications were prescribed to more than 5% of patients, but these accounted for almost half of all medication courses.


Subject(s)
Pharmaceutical Preparations , Adult , Child , Critical Care , Electronic Health Records , Humans , Odds Ratio , Retrospective Studies , United States , Young Adult
17.
Pediatr Crit Care Med ; 21(9): e599-e609, 2020 09.
Article in English | MEDLINE | ID: mdl-32195896

ABSTRACT

OBJECTIVES: To describe the pharmaceutical management of sedation, analgesia, and neuromuscular blockade medications administered to children in ICUs. DESIGN: A retrospective analysis using data extracted from the national database Health Facts. SETTING: One hundred sixty-one ICUs in the United States with pediatric admissions. PATIENTS: Children in ICUs receiving medications from 2009 to 2016. EXPOSURE/INTERVENTION: Frequency and duration of administration of sedation, analgesia, and neuromuscular blockade medications. MEASUREMENTS AND MAIN RESULTS: Of 66,443 patients with a median age of 1.3 years (interquartile range, 0-14.5), 63.3% (n = 42,070) received nonopioid analgesic, opioid analgesic, sedative, and/or neuromuscular blockade medications consisting of 83 different agents. Opioid and nonopioid analgesics were dispensed to 58.4% (n = 38,776), of which nonopioid analgesics were prescribed to 67.4% (n = 26,149). Median duration of opioid analgesic administration was 32 hours (interquartile range, 7-92). Sedatives were dispensed to 39.8% (n = 26,441) for a median duration of 23 hours (interquartile range, 3-84), of which benzodiazepines were most common (73.4%; n = 19,426). Neuromuscular-blocking agents were dispensed to 17.3% (n = 11,517) for a median duration of 2 hours (interquartile range, 1-15). Younger age was associated with longer durations in all medication classes. A greater proportion of operative patients received these medication classes for a longer duration than nonoperative patients. A greater proportion of patients with musculoskeletal and hematologic/oncologic diseases received these medication classes. CONCLUSIONS: Analgesic, sedative, and neuromuscular-blocking medications were prescribed to 63.3% of children in ICUs. The durations of opioid analgesic and sedative medication administration found in this study can be associated with known complications, including tolerance and withdrawal. Several medications dispensed to pediatric patients in this analysis are in conflict with Food and Drug Administration warnings, suggesting that there is potential risk in current sedation and analgesia practice that could be reduced with practice changes to improve efficacy and minimize risks.


Subject(s)
Analgesia , Neuromuscular Blockade , Analgesics/therapeutic use , Child , Humans , Hypnotics and Sedatives , Infant , Intensive Care Units , Retrospective Studies
18.
Sci Adv ; 6(7): eaax5701, 2020 02.
Article in English | MEDLINE | ID: mdl-32095520

ABSTRACT

Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle disorder associated with high mortality. Although a promising treatment for late-onset OTC deficiency, adeno-associated virus (AAV) neonatal gene therapy would only provide short-term therapeutic effects as the non-integrated genome gets lost during hepatocyte proliferation. CRISPR-Cas9-mediated homology-directed repair can correct a G-to-A mutation in 10% of OTC alleles in the livers of newborn OTC spfash mice. However, an editing vector able to correct one mutation would not be applicable for patients carrying different OTC mutations, plus expression would not be fast enough to treat a hyperammonemia crisis. Here, we describe a dual-AAV vector system that accomplishes rapid short-term expression from a non-integrated minigene and long-term expression from the site-specific integration of this minigene without any selective growth advantage for OTC-positive cells in newborns. This CRISPR-Cas9 gene-targeting approach may be applicable to all patients with OTC deficiency, irrespective of mutation and/or clinical state.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Targeting , Genetic Therapy , Mutation/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Animals , DNA Repair/genetics , Dependovirus/genetics , Dietary Proteins , Disease Models, Animal , Genetic Loci , Genetic Vectors/metabolism , INDEL Mutation/genetics , Liver/enzymology , Liver/pathology , Male , Mice , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Time Factors
19.
Front Physiol ; 11: 542950, 2020.
Article in English | MEDLINE | ID: mdl-33551825

ABSTRACT

Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein-"variable segment," which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.

20.
PLoS One ; 14(9): e0206484, 2019.
Article in English | MEDLINE | ID: mdl-31509535

ABSTRACT

A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the microbiome to treat a condition or improve therapy outcome. To address this need we present an innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as healthy controls for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related proteomes are considered. The incorporation of microbiome science into routine clinical practice necessitates a standard report for comparison of an individual's microbiome to the growing knowledgebase of "normal" microbiome data. The FecalBiome and the underlying technology of GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the assessment of fecal transplant and other microbiome products, as it contains a list of organisms from healthy individuals. In addition to the list of organisms and their abundances, this study also generated a collection of assembled contiguous sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or higher. These sequences can be used to create primers to study potential novel organisms. All data is freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI's Short Read Archive.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Metagenomics , Feces/microbiology , Humans , Metagenomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...