Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
2.
Sci Rep ; 10(1): 14506, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32879420

ABSTRACT

We study the change in magnetisation with paramagnetic Al addition in the CoFeNi0.5Cr0.5-Alx (x: 0, 0.5, 1, and 1.5) complex concentrated alloy. The compositions were developed utilising the Mulliken electronegativity and d-electron/atom ratio. Spherical FeCr rich nanoprecipitates are observed for X: 1.0 and 1.5 in an AlCoNi-rich matrix. A ~ 5 × increase in magnetisation (from 22 to 96 Am2/kg) coincides with this nanoprecipitate formation-the main magnetic contribution is determined to be from FeCr nanoprecipitates. The magnetisation increase is strange as paramagnetic Al addition dilutes the ferromagnetic Fe/Co/Ni additions. In this paper we discuss the magnetic and structural characterisation of the CoFeNi0.5Cr0.5-Alx composition and attempt to relate it to the interfacial energy.

3.
Nat Mater ; 16(4): 467-473, 2017 04.
Article in English | MEDLINE | ID: mdl-27941808

ABSTRACT

Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-µSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

4.
Phys Rev Lett ; 117(10): 107403, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27636494

ABSTRACT

We present an optically induced remanent photostriction in BiFeO_{3}, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO_{3}/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO_{3}. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

5.
Nat Mater ; 10(1): 39-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131962

ABSTRACT

Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.

6.
Nat Mater ; 8(2): 109-14, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19029892

ABSTRACT

Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance.

7.
Phys Rev Lett ; 100(11): 116601, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18517808

ABSTRACT

Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.

SELECTION OF CITATIONS
SEARCH DETAIL
...