Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 115: 652-666, 2024 01.
Article in English | MEDLINE | ID: mdl-37992787

ABSTRACT

Cytokines are potent immunomodulators exerting pleiotropic effects in the central nervous system (CNS). They influence neuronal functions and circuit activities with effects on memory processes and behaviors. Here, we unravel a neuromodulatory activity of interleukin-15 (IL-15) in mouse brain. Acute exposure of hippocampal slices to IL-15 enhances gamma-aminobutyricacid (GABA) release and reduces glutamatergic currents, while chronic treatment with IL-15 increases the frequency of hippocampal miniature inhibitory synaptic transmission and impairs memory formation in the novel object recognition (NOR) test. Moreover, we describe that serotonin is involved in mediating the hippocampal effects of IL-15, because a selective 5-HT3A receptor antagonist prevents the effects on inhibitory neurotransmission and ameliorates mice performance in the NOR test. These findings provide new insights into the modulatory activities of cytokines in the CNS, with implications on behavior.


Subject(s)
Interleukin-15 , Memory, Episodic , Mice , Animals , Interleukin-15/pharmacology , Hippocampus , Synaptic Transmission/physiology , Neurons
2.
Nat Commun ; 14(1): 3103, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248289

ABSTRACT

The mechanisms of communication between the brain and the immune cells are still largely unclear. Here, we characterize the populations of resident natural killer (NK) cells and innate lymphoid cells (ILC) 1 in the meningeal dura layer of adult mice. We describe that ILC1/NK cell-derived interferon-γ and acetylcholine can contribute to the modulation of brain homeostatic functions, shaping synaptic neuronal transmission and neurotransmitter levels with effects on mice behavior. In detail, the interferon-γ plays a role in the formation of non-spatial memory, tuning the frequency of GABAergic neurotransmission on cortical pyramidal neurons, while the acetylcholine is a mediator involved in the modulation of brain circuitries that regulate anxiety-like behavior. These findings disclose mechanisms of immune-to-brain communication that modulate brain functions under physiological conditions.


Subject(s)
Acetylcholine , Interferon-gamma , Animals , Mice , Lymphocytes , Immunity, Innate , Killer Cells, Natural , Anxiety
3.
Neurobiol Dis ; 174: 105894, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36240950

ABSTRACT

Experience-dependent neuronal changes and brain plasticity occur throughout life as animals adapt to their environment. Structural, morphological, and cellular modifications promoted by exposure to environmental enrichment (EE) have been reported to improve neuronal functions, increase hippocampal neurogenesis, ameliorate memory tasks and cognitive performance, and have beneficial effects on several brain diseases, including cancer. We specifically addressed the role of the EE in counteracting neuronal dysfunction in mice bearing glioma in the primary visual cortex. By recording spontaneous and evoked currents with patch clamp techniques in acute slices obtained from standard and enriched-housed mice, we found that the presence of glioma globally reduced the excitatory and inhibitory transmissions in the peritumoral area. The exposure to an enriched environment counteracts the tumor-mediated depression of both excitatory and inhibitory neuronal activities, with a more pronounced impact on evoked transmission. The effect of EE on glioma was also associated with reduced tumor cell proliferation. These results elucidate the impact of EE on excitatory and inhibitory neurotransmission of the primary visual cortex in control and glioma-bearing mice.


Subject(s)
Glioma , Primary Visual Cortex , Mice , Animals , Environment , Neuronal Plasticity/physiology , Synaptic Transmission/physiology
4.
Cancers (Basel) ; 14(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35681612

ABSTRACT

Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.

5.
Front Immunol ; 12: 730128, 2021.
Article in English | MEDLINE | ID: mdl-34552593

ABSTRACT

Several types of cancer grow differently depending on the environmental stimuli they receive. In glioma, exposure to an enriched environment (EE) increases the overall survival rate of tumor-bearing mice, acting on the cells that participate to define the tumor microenvironment. In particular, environmental cues increase the microglial production of interleukin (IL)-15 which promotes a pro-inflammatory (antitumor) phenotype of microglia and the cytotoxic activity of natural killer (NK) cells, counteracting glioma growth, thus representing a virtuous mechanism of interaction between NK cells and microglia. To mimic the effect of EE on glioma, we investigated the potential of creating engineered microglia as the source of IL-15 in glioma. We demonstrated that microglia modified with recombinant adeno-associated virus serotype 2 (rAAV2) carrying IL-15 (rAAV2-IL-15), to force the production of IL-15, are able to increase the NK cells viability in coculture. Furthermore, the intranasal delivery of rAAV2-IL-15 microglia triggered the interplay with NK cells in vivo, enhancing NK cell recruitment and pro-inflammatory microglial phenotype in tumor mass of glioma-bearing mice, and ultimately counteracted tumor growth. This approach has a high potential for clinical translatability, highlighting the therapeutic efficacy of forced IL-15 production in microglia: the delivery of engineered rAAV2-IL-15 microglia to boost the immune response paves the way to design a new perspective therapy for glioma patients.


Subject(s)
Brain Neoplasms/therapy , Dependovirus/metabolism , Genetic Therapy , Glioma/therapy , Immunotherapy , Interleukin-15/metabolism , Microglia/transplantation , Tumor Microenvironment , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Cytotoxicity, Immunologic , Dependovirus/genetics , Dependovirus/immunology , Genetic Engineering , Glioma/genetics , Glioma/immunology , Glioma/metabolism , Interleukin-15/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/metabolism , Phenotype , Transduction, Genetic , Tumor Burden
6.
Glia ; 69(11): 2682-2698, 2021 11.
Article in English | MEDLINE | ID: mdl-34310727

ABSTRACT

Many epigenetic modifications occur in glioma, in particular the histone-deacetylase class proteins play a pivotal role in glioma development, driving the proliferation rate and the invasiveness of tumor cells, and modulating the tumor microenvironment. In this study, we evaluated the role of the histone deacetylase HDAC8 in the regulation of the immune response in glioma and tumor growth. We found that inhibition of HDAC8 by the specific inhibitor PCI-34051 reduces tumor volume in glioma mouse models. We reported that HDAC8 modulates the viability and the migration of human and murine glioma cells. Interestingly, HDAC8 inhibition increases the acetylation of alpha-tubulin, suggesting this epigenetic modification controls glioma migration. Furthermore, we identify HDAC8 as a key molecule that supports a poorly immunogenic tumor microenvironment, modulating microglial phenotype and regulating the gene transcription of NKG2D ligands that trigger the Natural Killer cell-mediated cytotoxicity of tumor cells. Altogether, these results identify HDAC8 as a key actor in glioma growth and tumor microenvironment, and pave the way to a better knowledge of the molecular mechanisms of immune escape in glioma.


Subject(s)
Glioma , Histone Deacetylases , Percutaneous Coronary Intervention , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/immunology , Histone Deacetylases/metabolism , Histones/metabolism , Immunity , Mice , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...