Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275528

ABSTRACT

Whereas traditional histology and light microscopy require multiple steps of formalin fixation, paraffin embedding, and sectioning to generate images for pathologic diagnosis, Microscopy using Ultraviolet Surface Excitation (MUSE) operates through UV excitation on the cut surface of tissue, generating images of high resolution without the need to fix or section tissue and allowing for potential use for downstream molecular tests. Here, we present the first study of the use and suitability of MUSE microscopy for neuropathological samples. MUSE images were generated from surgical biopsy samples of primary and metastatic brain tumor biopsy samples (n = 27), and blinded assessments of diagnoses, tumor grades, and cellular features were compared to corresponding hematoxylin and eosin (H&E) images. A set of MUSE-treated samples subsequently underwent exome and targeted sequencing, and quality metrics were compared to those from fresh frozen specimens. Diagnostic accuracy was relatively high, and DNA and RNA integrity appeared to be preserved for this cohort. This suggests that MUSE may be a reliable method of generating high-quality diagnostic-grade histologic images for neuropathology on a rapid and sample-sparing basis and for subsequent molecular analysis of DNA and RNA.

2.
Arch Pathol Lab Med ; 148(3): 345-352, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37226827

ABSTRACT

CONTEXT.­: Digital pathology using whole slide images has been recently approved to support primary diagnosis in clinical surgical pathology practices. Here we describe a novel imaging method, fluorescence-imitating brightfield imaging, that can capture the surface of fresh tissue without requiring prior fixation, paraffin embedding, tissue sectioning, or staining. OBJECTIVE.­: To compare the ability of pathologists to evaluate direct-to-digital images with standard pathology preparations. DESIGN.­: One hundred surgical pathology samples were obtained. Samples were first digitally imaged, then processed for standard histologic examination on 4-µm hematoxylin-eosin-stained sections and digitally scanned. The resulting digital images from both digital and standard scan sets were viewed by each of 4 reading pathologists. The data set consisted of 100 reference diagnoses and 800 study pathologist reads. Each study read was compared to the reference diagnosis, and also compared to that reader's diagnosis across both modalities. RESULTS.­: The overall agreement rate, across 800 reads, was 97.9%. This consisted of 400 digital reads at 97.0% versus reference and 400 standard reads versus reference at 98.8%. Minor discordances (defined as alternative diagnoses without clinical treatment or outcome implications) were 6.1% overall, 7.2% for digital, and 5.0% for standard. CONCLUSIONS.­: Pathologists can provide accurate diagnoses from fluorescence-imitating brightfield imaging slide-free images. Concordance and discordance rates are similar to published rates for comparisons of whole slide imaging to standard light microscopy of glass slides for primary diagnosis. It may be possible, therefore, to develop a slide-free, nondestructive approach for primary pathology diagnosis.


Subject(s)
Pathology, Surgical , Humans , Hematoxylin , Eosine Yellowish-(YS) , Pathology, Surgical/methods , Paraffin Embedding , Microscopy/methods , Formaldehyde
3.
Vet Pathol ; 60(1): 52-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36286074

ABSTRACT

Fluorescence imitating brightfield imaging (FIBI) is a novel microscopy method that allows for real-time, nondestructive, slide-free tissue imaging of fresh, formalin-fixed, or paraffin-embedded tissue. The nondestructive nature of the technology permits tissue preservation for downstream analyses. The objective of this observational study was to assess the utility of FIBI compared with conventional hematoxylin and eosin (H&E)-stained histology slides in feline gastrointestinal histopathology. Formalin-fixed paraffin-embedded full-thickness small intestinal tissue specimens from 50 cases of feline chronic enteropathy were evaluated. The ability of FIBI to evaluate predetermined morphological features (epithelium, villi, crypts, lacteals, fibrosis, submucosa, and muscularis propria) and inflammatory cells was assessed on a 3-point scale (0 = FIBI cannot identify the feature; 1 = FIBI can identify the feature; 2 = FIBI can identify the feature with more certainty than H&E). H&E and FIBI images were also scored according to World Small Animal Veterinary Association (WSAVA) Gastrointestinal Standardization Group guidelines. FIBI identified morphological features with similar or, in some cases, higher confidence compared with H&E images. The identification of inflammatory cells was less consistent. FIBI and H&E images showed an overall poor agreement with regard to the assigned WSAVA scores. While FIBI showed an equal or better ability to identify morphological features in intestinal biopsies, its ability to identify inflammatory cells is currently inferior compared with H&E-based imaging. Future studies on the utility of FIBI as a diagnostic tool for noninflammatory histopathologic lesions are warranted.


Subject(s)
Cat Diseases , Inflammatory Bowel Diseases , Cats , Animals , Microscopy/veterinary , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/veterinary , Intestine, Small/pathology , Duodenum/pathology , Biopsy/veterinary , Cat Diseases/diagnostic imaging , Cat Diseases/pathology
4.
J Cutan Pathol ; 49(12): 1060-1066, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053830

ABSTRACT

BACKGROUND: Fluorescence imitating brightfield imaging (FIBI) is a novel alternative microscopy method that can image freshly excised, non-sectioned tissue. We examine its potential utility in dermatopathology by examining readily available specimens embedded in paraffin blocks. METHODS: Nine skin samples embedded in paraffin blocks were superficially deparaffinized using xylene and ethanol and stained with H&E. FIBI captured tissue surface histopathology images using simple microscope optics and a color camera. We then applied deep-learning-based models to improve resemblance to standard H&E coloration and contrast. FIBI images were compared with corresponding standard H&E slides and concordance was assessed by two dermatopathologists who numerically scored epidermal and dermal structure appearance and overall diagnostic utility. RESULTS: Dermatopathologist scores indicate that FIBI images are at least equivalent to standard H&E slides for visualizing structures such as epidermal layers, sweat glands, and nerves. CONCLUSION: Images acquired with FIBI are comparable to traditional H&E-stained slides, suggesting that this rapid, inexpensive, and non-destructive microscopy technique is a conceivable alternative to standard histopathology processes especially for time-sensitive procedures and in settings with limited histopathology resources.


Subject(s)
Microscopy , Paraffin , Humans , Pilot Projects , Microscopy/methods , Staining and Labeling , Epidermis
5.
Brain Behav ; 11(5): e02146, 2021 05.
Article in English | MEDLINE | ID: mdl-33838015

ABSTRACT

INTRODUCTION: Dimethyl sulfoxide (DMSO) is a widely used solvent to dissolve hydrophobic substances for clinical uses and experimental in vivo purposes. While usually regarded safe, our prior studies suggest changes to behavior following DMSO exposure. We therefore evaluated the effects of a five-day, short-term exposure to DMSO on postnatal infant rats (P6-10). METHODS: DMSO was intraperitoneally injected for five days at 0.2, 2.0, and 4.0 ml/kg body mass. One cohort of animals was sacrificed 24 hr after DMSO exposure to analyze the neurometabolic changes in four brain regions (cortex, hippocampus, basal ganglia, and cerebellum) by hydrophilic interaction liquid chromatography. A second cohort of animals was used to analyze chronic alterations to behavior and pathological changes to glia and neuronal cells later in life (P21-P40). RESULTS: 164 metabolites, including key regulatory molecules (retinoic acid, orotic acid, adrenic acid, and hypotaurine), were found significantly altered by DMSO exposure in at least one of the brain regions at P11 (p < .05). Behavioral tests showed significant hypoactive behavior and decreased social habits to the 2.0 and 4.0 ml DMSO/kg groups (p < .01). Significant increases in number of microglia and astrocytes at P40 were observed in the 4.0 ml DMSO/kg group (at p < .015.) CONCLUSIONS: Despite short-term exposure at low, putatively nontoxic concentrations, DMSO led to changes in behavior and social preferences, chronic alterations in glial cells, and changes in essential regulatory brain metabolites. The chronic neurological effects of DMSO exposure reported here raise concerns about its neurotoxicity and consequent safety in human medical applications and clinical trials.


Subject(s)
Dimethyl Sulfoxide , Neurochemistry , Animals , Brain , Rats , Rats, Long-Evans , Social Interaction
SELECTION OF CITATIONS
SEARCH DETAIL
...