Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338825

ABSTRACT

Highly resistant to reduction nitroxides open new opportunities for structural studies of biological macromolecules in their native environment inside living cells and for functional imaging of pH and thiols, enzymatic activity and redox status in living animals. 3,4-Disubstituted nitroxides of 2,2,5,5-tetraethylpyrrolidine and pyrroline series with a functional group for binding to biomolecules and a polar moiety for higher solubility in water and for more rigid attachment via additional coordination to polar sites were designed and synthesized. The EPR spectra, lipophilicities, kinetics of the reduction in ascorbate-containing systems and the decay rates in liver homogenates were measured. The EPR spectra of all 3,4-disubstituted pyrrolidine nitroxides showed additional large splitting on methylene hydrogens of the ethyl groups, while the spectra of similar pyrroline nitroxides were represented with a simple triplet with narrow lines and hyperfine structure of the nitrogen manifolds resolved in oxygen-free conditions. Both pyrrolidine and pyrroline nitroxides demonstrated low rates of reduction with ascorbate, pyrrolidines being a bit more stable than similar pyrrolines. The decay of positively charged nitroxides in the rat liver homogenate was faster than that of neutral and negatively charged radicals, with lipophilicity, rate of reduction with ascorbate and the ring type playing minor role. The EPR spectra of N,N-dimethyl-3,4-bis-(aminomethyl)-2,2,5,5-tetraethylpyrrolidine-1-oxyl showed dependence on pH with pKa = 3, ΔaN = 0.055 mT and ΔaH = 0.075 mT.


Subject(s)
Nitrogen Oxides , Pyrroles , Pyrrolidines , Rats , Animals , Spin Labels , Nitrogen Oxides/chemistry , Oxidation-Reduction , Pyrrolidines/chemistry , Ascorbic Acid , Electron Spin Resonance Spectroscopy , Cyclic N-Oxides/chemistry
2.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511257

ABSTRACT

Site-directed spin labeling followed by investigation using Electron Paramagnetic Resonance spectroscopy is a rapidly expanding powerful biophysical technique to study structure, local dynamics and functions of biomolecules using pulsed EPR techniques and nitroxides are the most widely used spin labels. Modern trends of this method include measurements directly inside a living cell, as well as measurements without deep freezing (below 70 K), which provide information that is more consistent with the behavior of the molecules under study in natural conditions. Such studies require nitroxides, which are resistant to the action of biogenic reductants and have high spin relaxation (dephasing) times, Tm. (1R(S),5R(S),7R(S),8R(S))-1,8-bis(hydroxymethyl)-6-azadispiro[4.1.4.2]tridecane-6-oxyl is a unique nitroxide that combines these features. We have developed a convenient method for the synthesis of this radical and studied the ways of its functionalization. Promising spin labels have been obtained, the parameters of their spin relaxation T1 and Tm have been measured, and the kinetics of reduction with ascorbate have been studied.


Subject(s)
Nitrogen Oxides , Spin Labels , Electron Spin Resonance Spectroscopy/methods , Nitrogen Oxides/chemistry
3.
Molecules ; 28(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838912

ABSTRACT

Nitroxide biradicals are efficient polarizing agents in dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance. Many recently reported radicals possess substantial DNP efficiency in organic solvents but have poor solubility in water media which is unfavorable for biological applications. In this paper, we report DNP efficiency at a high magnetic field for two water-soluble biradicals resistant to reducing media. Water solubility was achieved by obtaining the radicals in the form of quaternary ammonium salts. Parameters of hyperfine interaction and exchange interaction were quantified by EPR spectroscopy, and their influence on the DNP effect was determined. The resistance of the biradicals to strongly reducing media was characterized. High stability was achieved using tetraethyl substituents and pyrrolidine moieties.


Subject(s)
Magnetic Fields , Nitrogen Oxides , Magnetic Resonance Spectroscopy/methods , Water
4.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364453

ABSTRACT

Sterically shielded nitroxides, which demonstrate high resistance to bioreduction, are the spin labels of choice for structural studies inside living cells using pulsed EPR and functional MRI and EPRI in vivo. To prepare new sterically shielded nitroxides, a reaction of cyclic nitrones, including various 1-pyrroline-1-oxides, 2,5-dihydroimidazole-3-oxide and 4H-imidazole-3-oxide with alkynylmagnesium bromide wereused. The reaction gave corresponding nitroxides with an alkynyl group adjacent to the N-O moiety. The hydrogenation of resulting 2-ethynyl-substituted nitroxides with subsequent re-oxidation of the N-OH group produced the corresponding sterically shielded tetraalkylnitroxides of pyrrolidine, imidazolidine and 2,5-dihydroimidazole series. EPR studies revealed large additional couplings up to 4 G in the spectra of pyrrolidine and imidazolidine nitroxides with substituents in 3- and/or 4-positions of the ring.


Subject(s)
Bromides , Imidazolidines , Cyclic N-Oxides/chemistry , Nitrogen Oxides/chemistry , Spin Labels , Oxides , Pyrrolidines/chemistry , Electron Spin Resonance Spectroscopy/methods
6.
J Chem Phys ; 155(14): 144203, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34654311

ABSTRACT

The efficacy in 1H Overhauser dynamic nuclear polarization in liquids at ultralow magnetic field (ULF, B0 = 92 ± 0.8 µT) and polarization field (Bp = 1-10 mT) was studied for a broad variety of 26 different spin probes. Among others, piperidine, pyrrolidine, and pyrroline radicals specifically synthesized for this study, along with some well-established commercially available nitroxides, were investigated. Isotope-substituted variants, some sterically shielded reduction-resistant nitroxides, and some biradicals were included in the measurements. The maximal achievable enhancement, Emax, and the radio frequency power, P1/2, needed for reaching Emax/2 were measured. Physico-chemical features such as molecular weight, spectral linewidth, heterocyclic structure, different types of substituents, deuteration, and 15N-labeling as well as the difference between monoradicals and biradicals were investigated. For the unmodified nitroxide radicals, the Emax values correlate with the molecular weight. The P1/2 values correlate with the spectral linewidth and are additionally influenced by the type of substituents neighboring the nitroxide group. The nitroxide biradicals with high intramolecular spin-spin coupling show low performance. Nitroxides enriched with 15N and/or 2H afford significantly higher |Emax| and require lower power to do so, compared to their unmodified counterparts containing at natural abundance predominantly 14N and 1H. The results allow for a correlation of chemical features with physical hyperpolarization-related properties and indicate that small nitroxides with narrow spectral lines have clear advantages for the use in Overhauser dynamic nuclear polarization experiments. Perdeuteration and 15N-labeling can be used to additionally boost the spin probe performance.

7.
Molecules ; 26(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641310

ABSTRACT

Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.

8.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641544

ABSTRACT

Activation of a hydroxyl group towards nucleophilic substitution via reaction with methanesulfonyl chloride or PPh3-CBr4 system is a commonly used pathway to various functional derivatives. The reactions of (5R(S),6R(S))-1-X-6-(hydroxymethyl)-2,2-dimethyl- 1-azaspiro[4.4]nonanes 1a-d (X = O·; H; OBn, OBz) with MsCl/NR3 or PPh3-CBr4 were studied. Depending on substituent X, the reaction afforded hexahydro-1H,6H-cyclopenta[c]pyrrolo[1,2-b]isoxazole (2) (for X = O), a mixture of 2 and octahydrocyclopenta[c]azepines (4-6) (for X = OBn, OBz), or perhydro-cyclopenta[2,3]azeto[1,2-a]pyrrol (3) (for X = H) derivatives. Alkylation of the latter with MeI with subsequent Hofmann elimination afforded 2,3,3-trimethyl-1,2,3,4,5,7,8,8a-octahydrocyclopenta[c]azepine with 56% yield.

9.
Chempluschem ; 86(8): 1080-1086, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34402220

ABSTRACT

In our previous work [Edeleva et al. Chem. Commun. 2019, 55, 190-193], we proposed a versatile approach to the activation of the homolysis of an aldonitrone group-containing alkoxyamine by 1,3-dipolar cycloaddition to a vinyl monomer. Both nitroxide- and alkoxyamine-containing aldonitrones were found to be capable of reacting with the activated alkenes. In the present study, the kinetics of these reactions with 11 different vinyl monomers were investigated using EPR and NMR spectroscopy, and apparent activation energies as well as pre-exponential factors were determined. The influence of monomer structure on the rate of the 1,3-dipolar cycloaddition is discussed. For the vinyl monomers typically used in nitroxide mediated polymerization (styrene, methyl methacrylate) the rate coefficient of cycloaddition to the nitroxide is around k(353 K) ∼4 ⋅ 10-4  L mol-1 s-1 , whereas for n-butyl acrylate and methyl vinyl ketone we observed the fastest cycloaddition reaction with k(353 K)=8 ⋅ 10-3 and 4 ⋅ 10-2  L mol-1 s-1 respectively.

10.
Beilstein J Org Chem ; 15: 2036-2042, 2019.
Article in English | MEDLINE | ID: mdl-31501671

ABSTRACT

Sterically shielded nitroxides of the pyrrolidine series have shown the highest resistance to reduction. Here we report the synthesis of new pyrrolidine nitroxides from 5,5-dialkyl-1-pyrroline N-oxides via the introduction of a pent-4-enyl group to the nitrone carbon followed by an intramolecular 1,3-dipolar cycloaddition reaction and isoxazolidine ring opening. The kinetics of reduction of the new nitroxides with ascorbate were studied and compared to those of previously published (1S,2R,3'S,4'S,5'S,2″R)-dispiro[(2-hydroxymethyl)cyclopentan-1,2'-(3',4'-di-tert-butoxy)pyrrolidine-5',1″-(2″-hydroxymethyl)cyclopentane]-1'-oxyl (1).

11.
Free Radic Res ; 52(3): 339-350, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29098905

ABSTRACT

Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.


Subject(s)
Antioxidants/metabolism , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/methods , Mitochondria/metabolism , Nitrogen Oxides/chemistry
12.
J Magn Reson ; 266: 1-7, 2016 05.
Article in English | MEDLINE | ID: mdl-26987109

ABSTRACT

Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T=80-300K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180K) becomes negligible at 300K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Nitric Oxide/chemistry , Spin Labels , Trehalose/chemistry , Adsorption , Materials Testing , Temperature
13.
J Org Chem ; 77(23): 10688-98, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23130653

ABSTRACT

A sterically hindered bis-spirocyclic C(2)-symmetric chiral pyrrolidine-type nitroxide has been successfully synthesized starting from an l-tartaric derived nitrone. Starting from a pyrrolidine flanked by two methylene groups, complete quaternization of the two α-carbon atoms has been accomplished through iteration of completely regio- and stereoselective intramolecular cycloaddition reactions and organometallic additions to key nitrone intermediates, formed in turn by oxidation procedures. This method appears to be very useful for building up bulky spirocyclic moieties adjacent to a nitroxide group and provides an important supplementation to traditional methods of nitroxide synthesis. The synthesized chiral nitroxide showed a very high stability to reduction with ascorbate (k ≈ 8 × 10(-3) M(-1) s(-1)).

SELECTION OF CITATIONS
SEARCH DETAIL
...