Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Res Sq ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585924

ABSTRACT

Racial/ethnic differences are associated with the potential symptoms and conditions of post-acute sequelae SARS-CoV-2 infection (PASC) in adults. These differences may exist among children and warrant further exploration. We conducted a retrospective cohort study for children and adolescents under the age of 21 from the thirteen institutions in the RECOVER Initiative. The cohort is 225,723 patients with SARS-CoV-2 infection or COVID-19 diagnosis and 677,448 patients without SARS-CoV-2 infection or COVID-19 diagnosis between March 2020 and October 2022. The study compared minor racial/ethnic groups to Non-Hispanic White (NHW) individuals, stratified by severity during the acute phase of COVID-19. Within the severe group, Asian American/Pacific Islanders (AAPI) had a higher prevalence of fever/chills and respiratory symptoms, Hispanic patients showed greater hair loss prevalence in severe COVID-19 cases, while Non-Hispanic Black (NHB) patients had fewer skin symptoms in comparison to NHW patients. Within the non-severe group, AAPI patients had increased POTS/dysautonomia and respiratory symptoms, and NHB patients showed more cognitive symptoms than NHW patients. In conclusion, racial/ethnic differences related to COVID-19 exist among specific PASC symptoms and conditions in pediatrics, and these differences are associated with the severity of illness during acute COVID-19.

2.
Ann Intern Med ; 177(2): 165-176, 2024 02.
Article in English | MEDLINE | ID: mdl-38190711

ABSTRACT

BACKGROUND: The efficacy of the BNT162b2 vaccine in pediatrics was assessed by randomized trials before the Omicron variant's emergence. The long-term durability of vaccine protection in this population during the Omicron period remains limited. OBJECTIVE: To assess the effectiveness of BNT162b2 in preventing infection and severe diseases with various strains of the SARS-CoV-2 virus in previously uninfected children and adolescents. DESIGN: Comparative effectiveness research accounting for underreported vaccination in 3 study cohorts: adolescents (12 to 20 years) during the Delta phase and children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. SETTING: A national collaboration of pediatric health systems (PEDSnet). PARTICIPANTS: 77 392 adolescents (45 007 vaccinated) during the Delta phase and 111 539 children (50 398 vaccinated) and 56 080 adolescents (21 180 vaccinated) during the Omicron phase. INTERVENTION: First dose of the BNT162b2 vaccine versus no receipt of COVID-19 vaccine. MEASUREMENTS: Outcomes of interest include documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and cardiac complications. The effectiveness was reported as (1-relative risk)*100, with confounders balanced via propensity score stratification. RESULTS: During the Delta period, the estimated effectiveness of the BNT162b2 vaccine was 98.4% (95% CI, 98.1% to 98.7%) against documented infection among adolescents, with no statistically significant waning after receipt of the first dose. An analysis of cardiac complications did not suggest a statistically significant difference between vaccinated and unvaccinated groups. During the Omicron period, the effectiveness against documented infection among children was estimated to be 74.3% (CI, 72.2% to 76.2%). Higher levels of effectiveness were seen against moderate or severe COVID-19 (75.5% [CI, 69.0% to 81.0%]) and ICU admission with COVID-19 (84.9% [CI, 64.8% to 93.5%]). Among adolescents, the effectiveness against documented Omicron infection was 85.5% (CI, 83.8% to 87.1%), with 84.8% (CI, 77.3% to 89.9%) against moderate or severe COVID-19, and 91.5% (CI, 69.5% to 97.6%) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined 4 months after the first dose and then stabilized. The analysis showed a lower risk for cardiac complications in the vaccinated group during the Omicron variant period. LIMITATION: Observational study design and potentially undocumented infection. CONCLUSION: This study suggests that BNT162b2 was effective for various COVID-19-related outcomes in children and adolescents during the Delta and Omicron periods, and there is some evidence of waning effectiveness over time. PRIMARY FUNDING SOURCE: National Institutes of Health.


Subject(s)
BNT162 Vaccine , COVID-19 , United States , Humans , Adolescent , Child , COVID-19 Vaccines , COVID-19/prevention & control , Comparative Effectiveness Research , Hospitalization
3.
ACR Open Rheumatol ; 6(4): 189-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265177

ABSTRACT

OBJECTIVE: Acute visual impairment is the most feared complication of giant cell arteritis (GCA) but is challenging to predict. Magnetic resonance imaging (MRI) evaluates orbital pathology not visualized by an ophthalmologic examination. This study combined orbital and cranial vessel wall MRI to assess both orbital and cranial disease activity in patients with GCA, including patients without visual symptoms. METHODS: Patients with suspected active GCA who underwent orbital and cranial vessel wall MRI were included. In 14 patients, repeat imaging over 12 months assessed sensitivity to change. Clinical diagnosis of ocular or nonocular GCA was determined by a rheumatologist and/or ophthalmologist. A radiologist masked to clinical data scored MRI enhancement of structures. RESULTS: Sixty-four patients with suspected GCA were included: 25 (39%) received a clinical diagnosis of GCA, including 12 (19%) with ocular GCA. Orbital MRI enhancement was observed in 83% of patients with ocular GCA, 38% of patients with nonocular GCA, and 5% of patients with non-GCA. MRI had strong diagnostic performance for both any GCA and ocular GCA. Combining MRI with a funduscopic examination reached 100% sensitivity for ocular GCA. MRI enhancement significantly decreased after treatment (P < 0.01). CONCLUSION: In GCA, MRI is a sensitive tool that comprehensively evaluates multiple cranial structures, including the orbits, which are the most concerning site of pathology. Orbital enhancement in patients without visual symptoms suggests that MRI may detect at-risk subclinical ocular disease in GCA. MRI scores decreased following treatment, suggesting scores reflect inflammation. Future studies are needed to determine if MRI can identify patients at low risk for blindness who may receive less glucocorticoid therapy.

4.
J Colloid Interface Sci ; 657: 982-992, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103401

ABSTRACT

Hypothesis The thermocapillary migration of a spherical drop with a stagnant cap in the presence of a constant applied temperature gradient can be strongly affected by the finite thermal conductivity of the stagnant cap. Numerics The heat conduction of the stagnant cap is analytically modeled. The effects of the additional interfacial stresses generated by the disturbances to the local temperature field due to the presence of the cap at the fluid-fluid interface and the corresponding velocity of migration of the drop are evaluated by solving for the temperature and hydrodynamic field equations in and around the drop. An asymptotic model is derived to predict the terminal velocity in the presence of an infinitely conducting stagnant cap. Findings The effects of the surface conductivity and size of the stagnation region alongside the bulk thermal conductivities and viscosities of the drop and surrounding media are evaluated. The terminal velocity of the drop is shown to have a monotonic dependence on the conductivity of the stagnant cap. The bounds to the terminal velocity increment due to the stagnant cap are derived. These bounds can be of significance to multiphysics problems involving particle laden drops, Pickering emulsions and other multi-phase technologies where the conductivity of the surface adsorbents is non-negligible.

5.
medRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014095

ABSTRACT

Background: The efficacy of the BNT162b2 vaccine in pediatrics was assessed by randomized trials before the Omicron variant's emergence. The long-term durability of vaccine protection in this population during the Omicron period remains limited. Objective: To assess the effectiveness of BNT162b2 in preventing infection and severe diseases with various strains of the SARS-CoV-2 virus in previously uninfected children and adolescents. Design: Comparative effectiveness research accounting for underreported vaccination in three study cohorts: adolescents (12 to 20 years) during the Delta phase, children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. Setting: A national collaboration of pediatric health systems (PEDSnet). Participants: 77,392 adolescents (45,007 vaccinated) in the Delta phase, 111,539 children (50,398 vaccinated) and 56,080 adolescents (21,180 vaccinated) in the Omicron period. Exposures: First dose of the BNT162b2 vaccine vs. no receipt of COVID-19 vaccine. Measurements: Outcomes of interest include documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and cardiac complications. The effectiveness was reported as (1-relative risk)*100% with confounders balanced via propensity score stratification. Results: During the Delta period, the estimated effectiveness of BNT162b2 vaccine was 98.4% (95% CI, 98.1 to 98.7) against documented infection among adolescents, with no significant waning after receipt of the first dose. An analysis of cardiac complications did not find an increased risk after vaccination. During the Omicron period, the effectiveness against documented infection among children was estimated to be 74.3% (95% CI, 72.2 to 76.2). Higher levels of effectiveness were observed against moderate or severe COVID-19 (75.5%, 95% CI, 69.0 to 81.0) and ICU admission with COVID-19 (84.9%, 95% CI, 64.8 to 93.5). Among adolescents, the effectiveness against documented Omicron infection was 85.5% (95% CI, 83.8 to 87.1), with 84.8% (95% CI, 77.3 to 89.9) against moderate or severe COVID-19, and 91.5% (95% CI, 69.5 to 97.6)) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined after 4 months following the first dose and then stabilized. The analysis revealed a lower risk of cardiac complications in the vaccinated group during the Omicron variant period. Limitations: Observational study design and potentially undocumented infection. Conclusions: Our study suggests that BNT162b2 was effective for various COVID-19-related outcomes in children and adolescents during the Delta and Omicron periods, and there is some evidence of waning effectiveness over time. Primary Funding Source: National Institutes of Health.

6.
Langmuir ; 39(37): 13149-13157, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37672710

ABSTRACT

We studied the evolution of capillary bridges between nominally flat plates undergoing multiple cycles of compression and stretching in experiments and simulations. We varied the distance between the plates in small increments to study the full evolution of the bridge shape. Experiments show that contact angle hysteresis determines the shape of the bridge. In sliding drops, hysteresis can be modeled using a contact angle-dependent resistive force F̃R applied at the contact line. We developed a model that accurately captures the evolution of the bridge shape by combining F̃R and constrained energy minimization. Unlike previous work, this allows for both complete and partial contact line pinning. We also explored the effect of using nonparallel plates. The asymmetry in the bridge shape causes the movement of the center of mass of the bridge and can be explained by contact angle hysteresis. We find that even a slight misalignment between the flat plates can have a measurable effect.

7.
J Comput Graph Stat ; 32(2): 353-365, 2023.
Article in English | MEDLINE | ID: mdl-37608921

ABSTRACT

While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. Supplementary materials are available online.

8.
Oncology ; 101(11): 730-737, 2023.
Article in English | MEDLINE | ID: mdl-37467732

ABSTRACT

INTRODUCTION: Circulating inflammatory cytokines play critical roles in tumor-associated inflammation and immune responses. Recent data have suggested that several interleukins (ILs) mediate carcinogenesis in hepatocellular carcinoma (HCC). However, the predictive and prognostic value of circulating ILs is yet to be validated. Our study aimed to evaluate the association of the serum ILs with overall survival (OS) and clinicopathologic features in a large cohort of HCC patients. METHODS: We prospectively collected data and serum samples from 767 HCC patients treated at the University of Texas MD Anderson Cancer Center between 2001 and 2014, with a median follow-up of 67.4 months (95% confidence interval [CI]: 52.5, 83.3). Biomarker association with OS was evaluated by the log-rank method. RESULTS: The median OS in this cohort was 14.2 months (95% CI: 12, 16.1 months). Clinicopathologic features were more advanced, and OS was significantly inferior in patients with high circulating levels of IL1-R1, IL-6, IL-8, IL-10, IL-15, IL-16, and IL-18. CONCLUSION: Our study shows that several serum IL levels are valid prognostic biomarker candidates and potential targets for therapy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Cytokines , Liver Neoplasms/pathology , Biomarkers
9.
Environ Toxicol Chem ; 42(11): 2440-2452, 2023 11.
Article in English | MEDLINE | ID: mdl-37493065

ABSTRACT

Proposed development of a mine within Alaska's Bristol Bay watershed (USA) has raised concerns about the potential impact of copper (Cu) on Pacific salmon (Oncorhynchus spp.). We conducted 96-h flow-through bioassays using low-hardness and low dissolved organic carbon water to determine the acute lethal toxicity of Cu to sockeye (Oncorhynchus nerka), Chinook (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) fry. We aimed to determine Cu toxicity under field-relevant water quality conditions and to assess three methods of calculating ambient Cu criteria: the biotic ligand model (BLM), a multiple linear regression model endorsed by the US Environmental Protection Agency, and the hardness-based model currently used by the State of Alaska. The criteria generated by all models were below 20% lethal Cu concentrations by factors ranging from 2.2 to 54.3, indicating that all criteria would be protective against mortality. The multiple linear regression-based criteria were the most conservative and were comparable to BLM-based criteria. The median lethal concentrations (LC50s) for sockeye, Chinook, and coho were 35.2, 23.9, and 6.3 µg Cu/L, respectively. We also used the BLM to predict LC50s for each species. Model predictions differed from empirical LC50s by factors of 0.7 for sockeye and Chinook salmon, and 1.1 for coho salmon. These differences fell within the acceptable range of ±2, indicating the model's accuracy. We calculated critical lethal Cu accumulation values for each species to account for differing water chemistry in each bioassay; the present study revealed that coho salmon were most sensitive to Cu, followed by sockeye and Chinook salmon. Our findings underscore the importance of considering site- and species-specific factors when modeling Cu toxicity. The empirical data we present may enhance Cu risk assessments for Pacific salmon. Environ Toxicol Chem 2023;42:2440-2452. © 2023 SETAC.


Subject(s)
Oncorhynchus , Water Pollutants, Chemical , Animals , Dissolved Organic Matter , Copper/toxicity , Water Pollutants, Chemical/toxicity , Hardness , Salmon
10.
JAMA ; 329(8): 682-684, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36735270

ABSTRACT

This observational study explores whether rubella serostatus, which is routinely assessed during pregnancy, can serve as a proxy for measles serostatus in parturient persons.


Subject(s)
Measles , Mumps , Rubella , Humans , Philadelphia/epidemiology , Measles/epidemiology , Measles/prevention & control , Hospitals , Antibodies, Viral , Measles-Mumps-Rubella Vaccine , Vaccination
11.
Philos Trans A Math Phys Eng Sci ; 381(2243): 20220125, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36709780

ABSTRACT

Although inertial particle-laden flows occur in a wide range of industrial and natural processes, there is both a lack of fundamental understanding of these flows and continuum-level governing equations needed to predict transport and particle distribution. Towards this effort, the Taylor-Couette flow (TCF) system has been used recently to study the flow behaviour of particle-laden fluids under inertia. This article provides an overview of experimental, theoretical and computational work related to the TCF of neutrally buoyant non-Brownian suspensions, with an emphasis on the effect of finite-sized particles on the series of flow transitions and flow structures. Particles, depending on their size and concentration, cause several significant deviations from Newtonian fluid behaviour, including shifting the Reynolds number corresponding to transitions in flow structure and changing the possible structures present in the flow. Furthermore, particles may also migrate depending on the flow structure, leading to hysteretic effects that further complicate the flow behaviour. The current state of theoretical and computational modelling efforts to describe the experimental observations is discussed, and suggestions for potential future directions to improve the fundamental understanding of inertial particle-laden flows are provided. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (part 1)'.

12.
Oncotarget ; 13: 1314-1321, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473155

ABSTRACT

INTRODUCTION: Hepatocellular carcinoma (HCC) has limited systemic therapy options when discovered at an advanced stage. Thus, there is a need for accessible and minimally invasive biomarkers of response to guide the selection of patients for treatment. This study investigated the biomarker value of plasma growth hormone (GH) level as a potential biomarker to predict outcome in unresectable HCC patients treated with current standard therapy, atezolizumab plus bevacizumab (Atezo/Bev). MATERIALS AND METHODS: Study included unresectable HCC patients scheduled to receive Atezo/Bev. Patients were followed to determine progression-free survival (PFS) and overall survival (OS). Plasma GH levels were measured by ELISA and used to stratify the HCC patients into GH-high and GH-low groups (the cutoff normal GH levels in women and men are ≤3.7 µg/L and ≤0.9 µg/L, respectively). Kaplan-Meier method was used to calculate median OS and PFS and Log rank test was used to compare survival outcomes between GH-high and -low groups. RESULTS: Thirty-seven patients were included in this analysis, of whom 31 were males and 6 females, with a median age of 67 years (range: 37-80). At the time of the analysis, the one-year survival rate was 70% (95% CI: 0.51, 0.96) among GH low patients and 33% (95% CI: 0.16, 0.67) among GH high patients. OS was significantly superior in GH-low compared to GH-high patients (median OS: 18.9 vs. 9.3 months; p = 0.014). PFS showed a non-significant trend in favor of GH-low patients compared to the GH-high group (median PFS: 6.6 vs. 2.9 months; p = 0.053). DISCUSSION AND CONCLUSIONS: Plasma GH is a biomarker candidate for predicting treatment outcomes in advanced HCC patients treated with Atezo/Bev. This finding should be further validated in larger randomized clinical trials in advanced HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Bevacizumab/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Growth Hormone , Liver Neoplasms/drug therapy
13.
JAMA Netw Open ; 5(11): e2240993, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36350652

ABSTRACT

Importance: Pregnant persons are at an increased risk of severe COVID-19 from SARS-CoV-2 infection, and COVID-19 vaccination is currently recommended during pregnancy. Objective: To ascertain the association of vaccine type, time from vaccination, gestational age at delivery, and pregnancy complications with placental transfer of antibodies to SARS-CoV-2. Design, Setting, and Participants: This cohort study was conducted in Pennsylvania Hospital in Philadelphia, Pennsylvania, and included births at the study site between August 9, 2020, and April 25, 2021. Maternal and cord blood serum samples were available for antibody level measurements for maternal-neonatal dyads. Exposures: SARS-CoV-2 infection vs COVID-19 vaccination. Main Outcomes and Measures: IgG antibodies to the receptor-binding domain of the SARS-CoV-2 spike protein were measured by quantitative enzyme-linked immunosorbent assay. Antibody concentrations and transplacental transfer ratios were measured after SARS-CoV-2 infection or receipt of COVID-19 vaccines. Results: A total of 585 maternal-newborn dyads (median [IQR] maternal age, 31 [26-35] years; median [IQR] gestational age, 39 [38-40] weeks) with maternal IgG antibodies to SARS-CoV-2 detected at the time of delivery were included. IgG was detected in cord blood from 557 of 585 newborns (95.2%). Among 169 vaccinated persons without SARS-CoV-2 infection, the interval from first dose of vaccine to delivery ranged from 12 to 122 days. The geometric mean IgG level among 169 vaccine recipients was significantly higher than that measured in 408 persons after infection (33.88 [95% CI, 27.64-41.53] arbitrary U/mL vs 2.80 [95% CI, 2.50-3.13] arbitrary U/mL). Geometric mean IgG levels were higher after vaccination with the mRNA-1273 (Moderna) vaccine compared with the BNT162b2 (Pfizer/BioNTech) vaccine (53.74 [95% CI, 40.49-71.33] arbitrary U/mL vs 25.45 [95% CI, 19.17-33.79] arbitrary U/mL; P < .001). Placental transfer ratios were lower after vaccination compared with after infection (0.80 [95% CI, 0.68-0.93] vs 1.06 [95% CI, 0.98-1.14]; P < .001) but were similar between the mRNA vaccines (mRNA-1273: 0.70 [95% CI, 0.55-0.90]; BNT162b2: 0.85 [95% CI, 0.69-1.06]; P = .25). Time from infection or vaccination to delivery was associated with transfer ratio in models that included gestational age at delivery and maternal hypertensive disorders, diabetes, and obesity. Placental antibody transfer was detectable as early as 26 weeks' gestation. Transfer ratio that was higher than 1.0 was present for 48 of 51 (94.1%) births at 36 weeks' gestation or later by 8 weeks after vaccination. Conclusions and Relevance: This study found that maternal and cord blood IgG antibody levels were higher after COVID-19 vaccination compared with after SARS-CoV-2 infection, with slightly lower placental transfer ratios after vaccination than after infection. The findings suggest that time from infection or vaccination to delivery was the most important factor in transfer efficiency.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adult , Female , Humans , Infant, Newborn , Pregnancy , BNT162 Vaccine , Cohort Studies , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulin G , Philadelphia , Placenta , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2 , Vaccination
14.
Ann Appl Stat ; 16(1): 537-550, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36330421

ABSTRACT

Research in functional regression has made great strides in expanding to non-Gaussian functional outcomes, but exploration of ordinal functional outcomes remains limited. Motivated by a study of computer-use behavior in rhesus macaques (Macaca mulatta), we introduce the Ordinal Probit Functional Outcome Regression model (OPFOR). OPFOR models can be fit using one of several basis functions including penalized B-splines, wavelets, and O'Sullivan splines-the last of which typically performs best. Simulation using a variety of underlying covariance patterns shows that the model performs reasonably well in estimation under multiple basis functions with near nominal coverage for joint credible intervals. Finally, in application, we use Bayesian model selection criteria adapted to functional outcome regression to best characterize the relation between several demographic factors of interest and the monkeys' computer use over the course of a year. In comparison with a standard ordinal longitudinal analysis, OPFOR outperforms a cumulative-link mixed-effects model in simulation and provides additional and more nuanced information on the nature of the monkeys' computer-use behavior.

15.
Science ; 378(6622): 899-904, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36423275

ABSTRACT

Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.


Subject(s)
Influenza A virus , Influenza B virus , Orthomyxoviridae Infections , Vaccines, Combined , Vaccines, Synthetic , mRNA Vaccines , Animals , Mice , Ferrets , Nucleosides/chemistry , Nucleosides/genetics , Orthomyxoviridae Infections/prevention & control , Vaccines, Combined/genetics , Vaccines, Combined/immunology , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Cross Reactions
16.
Front Oncol ; 12: 986305, 2022.
Article in English | MEDLINE | ID: mdl-36276070

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive neoplasm with poor clinical outcome because most patients present at an advanced stage, at which point curative surgical options, such as tumor excision or liver transplantation, are not feasible. Therefore, the majority of HCC patients require systemic therapy. Nonetheless, the currently approved systemic therapies have limited effects, particularly in patients with advanced and resistant disease. Hence, there is a critical need to identify new molecular targets and effective systemic therapies to improve HCC outcome. The liver is a major target of the growth hormone receptor (GHR) signaling, and accumulating evidence suggests that GHR signaling plays an important role in HCC pathogenesis. We tested the hypothesis that GHR could represent a potential therapeutic target in this aggressive neoplasm. We measured GH levels in 767 HCC patients and 200 healthy controls, and then carried out clinicopathological correlation analyses. Moreover, specific inhibition of GHR was performed in vitro using siRNA and pegvisomant (a small peptide that blocks GHR signaling and is currently approved by the FDA to treat acromegaly) and in vivo, also using pegvisomant. GH was significantly elevated in 49.5% of HCC patients, and these patients had a more aggressive disease and poorer clinical outcome (P<0.0001). Blockade of GHR signaling with siRNA or pegvisomant induced substantial inhibitory cellular effects in vitro. In addition, pegvisomant potentiated the effects of sorafenib (P<0.01) and overcame sorafenib resistance (P<0.0001) in vivo. Mechanistically, pegvisomant decreased the phosphorylation of GHR downstream survival proteins including JAK2, STAT3, STAT5, IRS-1, AKT, ERK, and IGF-IR. In two patients with advanced-stage HCC and high GH who developed sorafenib resistance, pegvisomant caused tumor stability. Our data show that GHR signaling represents a novel "druggable" target, and pegvisomant may function as an effective systemic therapy in HCC. Our findings could also lead to testing GHR inhibition in other aggressive cancers.

17.
Chem Biodivers ; 19(12): e202200746, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279370

ABSTRACT

Cancer cell lines serve as model in vitro systems for investigating therapeutic interventions. Recent advances in high-throughput genomic profiling have enabled the systematic comparison between cell lines and patient tumor samples. The highly interconnected nature of biological data, however, presents a challenge when mapping patient tumors to cell lines. Standard clustering methods can be particularly susceptible to the high level of noise present in these datasets and only output clusters at one unknown scale of the data. In light of these challenges, we present NetCellMatch, a robust framework for network-based matching of cell lines to patient tumors. NetCellMatch first constructs a global network across all cell line-patient samples using their genomic similarity. Then, a multi-scale community detection algorithm integrates information across topologically meaningful (clustering) scales to obtain Network-Based Matching Scores (NBMS). NBMS are measures of cluster robustness which map patient tumors to cell lines. We use NBMS to determine representative "avatar" cell lines for subgroups of patients. We apply NetCellMatch to reverse-phase protein array data obtained from The Cancer Genome Atlas for patients and the MD Anderson Cell Line Project for cell lines. Along with avatar cell line identification, we evaluate connectivity patterns for breast, lung, and colon cancer and explore the proteomic profiles of avatars and their corresponding top matching patients. Our results demonstrate our framework's ability to identify both patient-cell line matches and potential proteomic drivers of similarity. Our methods are general and can be easily adapted to other'omic datasets.


Subject(s)
Neoplasms , Proteomics , Humans , Cell Line
18.
J Am Stat Assoc ; 117(538): 533-546, 2022.
Article in English | MEDLINE | ID: mdl-36090952

ABSTRACT

It is well-established that interpatient heterogeneity in cancer may significantly affect genomic data analyses and in particular, network topologies. Most existing graphical model methods estimate a single population-level graph for genomic or proteomic network. In many investigations, these networks depend on patient-specific indicators that characterize the heterogeneity of individual networks across subjects with respect to subject-level covariates. Examples include assessments of how the network varies with patient-specific prognostic scores or comparisons of tumor and normal graphs while accounting for tumor purity as a continuous predictor. In this paper, we propose a novel edge regression model for undirected graphs, which estimates conditional dependencies as a function of subject-level covariates. We evaluate our model performance through simulation studies focused on comparing tumor and normal graphs while adjusting for tumor purity. In application to a dataset of proteomic measurements on plasma samples from patients with hepatocellular carcinoma (HCC), we ascertain how blood protein networks vary with disease severity, as measured by HepatoScore, a novel biomarker signature measuring disease severity. Our case study shows that the network connectivity increases with HepatoScore and a set of hub genes as well as important gene connections are identified under different HepatoScore, which may provide important biological insights to the development of precision therapies for HCC.

19.
J Hepatocell Carcinoma ; 9: 823-837, 2022.
Article in English | MEDLINE | ID: mdl-35996397

ABSTRACT

Introduction: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancers. It is an aggressive neoplasm with dismal outcome because most of the patients present with an advanced-stage disease, which precludes curative surgical options. Therefore, these patients require systemic therapies that typically induce small improvements in overall survival. Hence, it is crucial to identify new and promising therapeutic targets for HCC to improve the current outcome. The liver is a key organ in the signaling cascade triggered by the growth hormone receptor (GHR). Previous studies have shown that GHR signaling stimulates the proliferation and regeneration of liver cells and tissues; however, a definitive role of GHR signaling in HCC pathogenesis has not been identified. Methods: In this study, we used a direct and specific approach to analyze the role of GHR in HCC development. This approach encompasses mice with global (Ghr-/- ) or liver-specific (LiGhr-/- ) disruption of GHR expression, and the injection of diethylnitrosamine (DEN) to develop HCC in these mice. Results: Our data show that DEN induced HCC in a substantial majority of the Ghr+/+ (93.5%) and Ghr +/- (87.1%) mice but not in the Ghr-/- (5.6%) mice (P < 0.0001). Although 57.7% of LiGhr-/- mice developed HCC after injection of DEN, these mice had significantly fewer tumors than LiGhr+/+ (P < 0.001), which implies that the expression of GHR in the liver cells might increase tumor burden. Notably, the pathologic, histologic, and biochemical characteristics of DEN-induced HCC in mice resembled to a great extent human HCC, despite the fact that etiologically this model does not mimic this cancer in humans. Our data also show that the effects of DEN on mice livers were primarily related to its carcinogenic effects and ability to induce HCC, with minimal effects related to toxic effects. Conclusion: Collectively, our data support an important role of GHR in HCC development, and suggest that exploiting GHR signaling may represent a promising approach to treat HCC.

20.
Obstet Gynecol ; 139(6): 1018-1026, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35675599

ABSTRACT

OBJECTIVE: To quantify the extent to which neighborhood characteristics contribute to racial and ethnic disparities in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity in pregnancy. METHODS: This cohort study included pregnant patients who presented for childbirth at two hospitals in Philadelphia, Pennsylvania from April 13 to December 31, 2020. Seropositivity for SARS-CoV-2 was determined by measuring immunoglobulin G and immunoglobulin M antibodies by enzyme-linked immunosorbent assay in discarded maternal serum samples obtained for clinical purposes. Race and ethnicity were self-reported and abstracted from medical records. Patients' residential addresses were geocoded to obtain three Census tract variables: community deprivation, racial segregation (Index of Concentration at the Extremes), and crowding. Multivariable mixed effects logistic regression models and causal mediation analyses were used to quantify the extent to which neighborhood variables may explain racial and ethnic disparities in seropositivity. RESULTS: Among 5,991 pregnant patients, 562 (9.4%) were seropositive for SARS-CoV-2. Higher seropositivity rates were observed among Hispanic (19.3%, 104/538) and Black (14.0%, 373/2,658) patients, compared with Asian (3.2%, 13/406) patients, White (2.7%, 57/2,133) patients, and patients of another race or ethnicity (5.9%, 15/256) (P<.001). In adjusted models, per SD increase, deprivation (adjusted odds ratio [aOR] 1.16, 95% CI 1.02-1.32) and crowding (aOR 1.15, 95% CI 1.05-1.26) were associated with seropositivity, but segregation was not (aOR 0.90, 95% CI 0.78-1.04). Mediation analyses revealed that crowded housing may explain 6.7% (95% CI 2.0-14.7%) of the Hispanic-White disparity and that neighborhood deprivation may explain 10.2% (95% CI 0.5-21.1%) of the Black-White disparity. CONCLUSION: Neighborhood deprivation and crowding were associated with SARS-CoV-2 seropositivity in pregnancy in the prevaccination era and may partially explain high rates of SARS-CoV-2 seropositivity among Black and Hispanic patients. Investing in structural neighborhood improvements may reduce inequities in viral transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Female , Humans , Neighborhood Characteristics , Philadelphia/epidemiology , Pregnancy , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...