Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Pharm Res ; 41(1): 39-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37848751

ABSTRACT

OBJECTIVE: This study aimed to determine the extent and rate of lidocaine released in vivo from two bioequivalent topical delivery systems (TDS) by using complementary assessments: pharmacokinetic analysis in healthy human volunteers, and residual lidocaine in TDS following 12 h of wear. The goal was to explore a potentially more clinically meaningful strength presentation than percent active pharmaceutical ingredient loaded in topical systems. METHODS: A three-arm, open-label, crossover clinical study was conducted in 23 human subjects, with 5% lidocaine topical systems from two manufacturers, and intravenous lidocaine administration. Residual drug and LC-MS/MS analyses were performed on worn TDS and serum samples. The rate and extent of drug released from the TDS during wear were determined through (1) calculations of consumed lidocaine via analysis of residual drug in worn TDS, and (2) a pharmacokinetic approach via derivation of the absolute clearance and serum lidocaine concentration at steady state. RESULTS: Overall the pharmacokinetic approach underestimated the amount transferred to the subject and exhibited greater variability, which may relate to natural inter-subject variability in pharmacokinetic parameters. Further, lidocaine TDS are intended for localized, not systemic, delivery and this may also explain some of the variability seen in the systemic serum concentrations. CONCLUSIONS: The residual drug and pharmacokinetic approaches align well for transdermal formulations, but the differences in administration route (topical versus transdermal) all but eliminates the potential use of the pharmacokinetic approach unless additional compartmental modeling is explored.


Subject(s)
Lidocaine , Tandem Mass Spectrometry , Humans , Pharmaceutical Preparations , Chromatography, Liquid , Administration, Cutaneous , Drug Delivery Systems
2.
Bioanalysis ; 15(10): 553-566, 2023 May.
Article in English | MEDLINE | ID: mdl-37200054

ABSTRACT

Background: The aim of this work was to develop and validate sensitive and efficient analytical methods for estimating systemic drug exposure and residual drug following the application of topical delivery systems. Materials & methods: Lidocaine was extracted using a liquid-liquid extraction technique from commercial topical products and analyzed using ultra high-performance liquid chromatography. A separate LC-MS/MS method was developed for analyzing human serum samples. Results & conclusion: The developed methods were successfully applied for estimating lidocaine content in two commercial products demonstrating 97.4-104.0% for product A and 105.0-110.7% for product B. The LC-MS/MS method displayed successful analysis of lidocaine from human serum samples. The developed methods are recommended for quantifying systemic exposure and residual drug analysis of topical systems.


Subject(s)
Lidocaine , Tandem Mass Spectrometry , Humans , Lidocaine/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods
3.
Int J Pharm ; 624: 122037, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35870665

ABSTRACT

The determination of the variability of critical dosage form attributes has been a challenge in establishing the quality of pharmaceutical products. During the development process knowledge is minimal. Consequently, ad hoc statistical tools such as hypothesis or significance tests, with calibrated decision error rates are often used in an effort to vet CQAs (Critical Quality Attributes) and keep their levels "between the curbs". As progress moves towards product launch, process and mechanistic understanding grows considerably and there are opportunities to leverage that knowledge for predictive modeling. Bayesian models offer a coherent strategy for integrating prior knowledge into both experimental design as well as predictive analysis for optimal risk-based decision making. This is because the Bayesian paradigm, unlike the frequentist paradigm, can assign probabilities to underlying states of nature that directly impact safety and efficacy such as the population distribution of tablet potencies or dissolution profiles in a batch. However, there are challenges and reluctance in switching to a predictive modeling quality framework once regulatory approval has been attained. This paper offers encouragement to make this switch. In this paper, we review a joint Long Island University - Purdue University (LIU-PU) FDA funded project whose purpose was to further integrate the concepts of this adaptive approach to lot release with the rationale and methods for data generation and curation and to extend the testing of this approach. We discuss the utility of the approach in product development. We consider the regulatory compliance implications, with examples, and establish a potential way forward toward implementation of this approach for both industry and regulatory stake-holders.


Subject(s)
Bayes Theorem , Humans , Tablets
4.
Mol Pharm ; 19(1): 26-34, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34905926

ABSTRACT

The molecular basis of adhesion leading to sticking was investigated by exploring the correlation between thermal analysis and molecular simulations. It is hypothesized that intermolecular interactions between a drug molecule and a punch face are the first step in the adhesion process and the rank order of adhesion during tablet compression should correspond to the rank order of the energies of these interactions. In the present study, the sticking propensity was investigated using ibuprofen, flurbiprofen, and ketoprofen as model substances. At the intermolecular level, a thermal analysis model was proposed as an experimental technique to estimate the work of adhesion between ibuprofen, flurbiprofen, and ketoprofen in a DSC aluminum pan. The linear relationship was established between the enthalpy of vaporization and sample mass to demonstrate the accuracy of the instruments used. The threshold mass for ibuprofen, flurbiprofen, and ketoprofen was determined to be 107, 112, and 222 µg, respectively, after three replicate measurements consistent with the experimental results. Ketoprofen showed a 2-fold higher threshold mass compared to ibuprofen and flurbiprofen, which predicts that ketoprofen should have the highest sticking propensity. Computationally, the rank order of the work of adhesion between ibuprofen, flurbiprofen, and ketoprofen with the metal surface was simulated to be -75.91, 44.75, and -96.91 kcal/mol, respectively, using Materials Studio. The rank order of the interaction between the drug molecule and the iron superlattice decreases in the order ketoprofen > ibuprofen > flurbiprofen. The results indicate that the thermal model can be successfully implemented to assess the sticking propensity of a drug at the molecular level. Also, a new molecular simulation script was successfully applied to determine the interaction energy of the drug molecule upon contact with iron.


Subject(s)
Tablets/chemistry , Adhesiveness , Calorimetry, Differential Scanning , Compressive Strength , Flurbiprofen/chemistry , Ibuprofen/chemistry , Ketoprofen/chemistry , Models, Molecular
5.
Eur J Pharm Sci ; 161: 105806, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33722733

ABSTRACT

A present investigation aimed for multivariate modeling as a solution to resolve inaccuracy in dissolution testing experienced in the use of in-situ UV fiber optics dissolution systems (FODS) due to signal saturation problems. This problem is specifically encountered with high absorbance of moderate to high dose formulations. A high absorbance not only impede a real-time assessment but can also result in inaccurate dissolution profiles. Full spectra (F) and low absorbance regions (L) were employed to develop linear and quadratic (Q) partial least squares (PLS) and principal component regression (PCR) models. The conventional dissolution of atenolol, ibuprofen, and metformin HCl immediate-release (IR) tablets followed by HPLC analysis was used as a reference method to gauge multivariate models' performance in the 'built-in' Opt-Diss model. The linear multivariate modeling outputs resulted in accurate dissolution profiles, despite the potentially high UV signal saturation at later time points. Conversely, the 'built-in' Opt-Diss model and multivariate quadratic models failed to predict dissolution profiles accurately. The current studies show a good agreement in the predictions across both low absorbance region and full spectra, demonstrating the multivariate models' robust predictability. Overall, linear PLS and PCR models showed statistically similar results, which demonstrated their applicative flexibility for using FODS despite signal saturation and provides a unique alternative to traditional and labor-intensive UV or HPLC dissolution testing.


Subject(s)
Ibuprofen , Drug Compounding , Least-Squares Analysis , Solubility , Tablets
6.
Mol Pharm ; 18(4): 1779-1791, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33689375

ABSTRACT

The current research work focuses on understanding the reported discrepancies and our observations in the dissolution profiles of warfarin sodium tablets and potential patient-based failure modes during oral warfarin therapy. It was hypothesized that freely soluble crystalline warfarin sodium (WARC) at first transforms into noncrystalline warfarin sodium (WARNC) under stress conditions. The WARC → WARNC conversion facilitates the rapid formation of the poorly soluble unionized form, which could lead to dissolution failures and potential poor in vivo performance. Depressed warfarin concentrations locally in the gastrointestinal tract (GIT) may in turn lead to inadequate absorption and thereby affect bioavailability. A low volume two-stage dissolution method was developed to mimic in vivo GIT conditions. Warfarin sodium tablets exposed to room temperature and 75% relative humidity for 1 week showed approximately 23% decrease in drug release. The decline in drug release supports the hypothesis that WARNC is converted to the unionized form faster than WARC does under the same conditions. Solid state characterization (powder X-ray diffractometry and differential scanning calorimetry) data demonstrated the disproportionation of warfarin sodium to unionized warfarin after solubility and dissolution studies. The findings support the hypothesis and a possible failure mode of warfarin sodium tablets. This work is a second case study from our laboratory on narrow therapeutic index drug products in which the instability of the solid state of the drug substance is potentially responsible for observed clinical failures.


Subject(s)
2-Propanol/chemistry , Anticoagulants/pharmacokinetics , Solvents/chemistry , Warfarin/pharmacokinetics , Anticoagulants/administration & dosage , Anticoagulants/chemistry , Biological Availability , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Drug Liberation , Gastrointestinal Absorption , Humans , Powders , Solubility , Tablets , Warfarin/administration & dosage , Warfarin/chemistry , X-Ray Diffraction
8.
J Pharm Biomed Anal ; 195: 113833, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33358085

ABSTRACT

Currently, there is no systematic approach available for the validation, quantitative assessment, and troubleshooting for the in-situ fiber optic/bathless dissolution system (FODS). In this report, a dissolution protocol was developed and validated for a model product, chlorpheniramine maleate (CPM) 4 mg IR tablets. Dissolution runs were conducted at 37 ± 0.2 °C using a USP apparatus II, at 50 rpm in 500 mL of 0.01 N hydrochloric acid. The dissolution system was validated for linearity, accuracy, precision, specificity, and robustness analogously to an HPLC method validation. The linearity determination method was developed using five concentration levels between 25-125 % of the expected concentration, while for accuracy, 80 %, 100 %, and 120 % levels were used, and precision was determined using six runs at the 100 % level. Probe sampling depth, orientation, analytical wavelength, and paddle speed were varied to evaluate the robustness of the system tested. Method equivalence was established by comparing the dissolution results from FODS and the traditional dissolution method using UV spectrophotometry. Based on the statistics generated using the dissolution tests, the results are linear, accurate, precise, and specific. Robustness testing demonstrates that small changes in operating conditions did not significantly change the result. No significant difference in the amount dissolved at Q-timepoint was observed between FODS and traditional testing. Therefore, the FODS is a suitable alternative to traditional dissolution for CPM immediate-release tablets (many other drug products have been tested in the laboratory, and reports are in preparation). Additionally, the current work discusses problems related to media preparation, probe sensitivity, and excipient effects on data collected using FODS. The instrument-specific artifacts and data analysis problems are addressed and troubleshooting with possible solutions to eliminate or mitigate the errors. Although the FODS method was developed and evaluated using CPM in 500 mL dissolution volume, the dissolution method using a more common pharmacopoeial dissolution volume, i.e., 900 mL, was used to demonstrate the troubleshooting experiments for the drug products requiring 900 mL dissolution media.


Subject(s)
Chlorpheniramine , Excipients , Chromatography, High Pressure Liquid , Solubility , Tablets
9.
Eur J Pharm Sci ; 156: 105573, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32987114

ABSTRACT

Biorelevant media are increasingly being employed as dissolution media in drug development, including in smaller volumes than 900ml and under non-sink conditions. The objectives were to assess interday repeatability, interanalyst repeatability, and interlaboratory reproducibility of dissolution profiles from biorelevant media, as well as to assess the impacts of biorelevant media production method and biorelevant medium volume on dissolution profiles. Ibuprofen and ketoconazole tablets were subjected to dissolution testing in 500ml, 300ml, and 40ml of fasted state simulated gastric fluid (FaSSGF), fed state simulated gastric fluid (FeSSGF), fasted state simulated intestinal fluid version 2 (FaSSIF-V2), and fed state simulated intestinal fluid version 2 (FeSSIF-V2). f2 was used to assess repeatability and reproducibility of dissolution profiles. Results indicate favorable interday repeatability (83 of 88 comparisons were similar), favorable interanalyst repeatability (19 of 21 comparisons were similar), and favorable interlaboratory reproducibility (10 of 14 comparisons were similar) of dissolution profiles from biorelevant media, with commercial media showing greater interlaboratory reproducibility than 'from scratch' media. However, biorelevant medium production had low impact on profiles when one analyst conducted all medium preparations and study procedures at one location. Additionally, biorelevant media detected differences when products were not similar. Overall, biorelevant media showed favorable repeatability and reproducibility performance.


Subject(s)
Ibuprofen , Ketoconazole , Reproducibility of Results , Solubility , Tablets
10.
AAPS PharmSciTech ; 21(5): 172, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32533366

ABSTRACT

Dissolution testing and solubility determinations in different biorelevant media have gained considerable interest in the pharmaceutical industry from early-stage development of new products to forecasting bioequivalence. Among all biorelevant fluids, the preparation of fed-state simulated gastric fluid (FeSSGF) and handling of samples from dissolution/solubility testing in FeSSGF is considered to be relatively challenging. Challenges include maintaining the stability of FeSSGF medium upon sampling, filtration, and mitigating analytical interference of excipients and milk components. To overcome these challenges, standard and uniform working practices are required that are not only helpful in preparation of stable FeSSGF but also serve as a harmonizing guide for the collection of dissolution/solubility samples and their subsequent processing (i.e., handling and assay). The optimization of sample preparation methodology is crucial to reduce method-related variance by ensuring specificity, robustness, and reproducibility with acceptable recovery of the analytes. The sample preparation methodology includes a combination of techniques including filtration, solvent treatment, and centrifugation to remove the interfering media-related components and excipients from the analyte. The analytes of interest were chromatographically separated from the interfering analytes to quantify the drug concentration using the new high-performance liquid chromatography methods with ultraviolet detection. The methods developed allow rapid sample preparation, acceptable specificity, reproducible recoveries (greater than 95% of label claim), and quantification of study drugs (ibuprofen and ketoconazole). The sample preparation technique and method considerations provided here for ibuprofen and ketoconazole can serve as a starting point for solubility and dissolution testing of other small molecules in FeSSGF.


Subject(s)
Drug Development/methods , Gastric Acid/metabolism , Ibuprofen/metabolism , Ketoconazole/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Chromatography, High Pressure Liquid/methods , Ibuprofen/chemistry , Ketoconazole/chemistry , Reproducibility of Results , Solubility , Tablets
11.
Eur J Pharm Biopharm ; 153: 23-35, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32504797

ABSTRACT

Drug-drug cocrystals (DDC) represent a unique subset of pharmaceutical materials offering distinct advantages in combination therapies, pharmacokinetics, and patient compliance. However, their structure-function relationships are rarely reported despite its central importance in successful medicine. A material-sparing approach consisting of a molecular and structural perspective is reported to evaluate tabletability of a model DDC, metformin:salicylic acid, relative to its components: metformin HCl (MET) and sodium salicylate (SAL). MET alone displayed a very poor tabletability, which could be attributed to its isotropic and stiff interaction topology. SAL displayed a highly anisotropic interaction topology with layers of strongly hydrogen-bonded salicylate molecules promoting deformation and tabletability. This is also confirmed by its low moduli. DDC yielded intermediate stiffness and elastic anisotropy material with an improved plastic flow and overall better tabletability. Overall, DDC is a promising therapeutic class requiring the physical-mechanical evaluation to assure their processability to enjoy their therapeutic advantages.


Subject(s)
Metformin/chemistry , Salicylic Acid/chemistry , Tablets/chemistry , Anisotropy , Crystallization/methods , Structure-Activity Relationship
12.
ACS Omega ; 5(17): 9690-9701, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32391455

ABSTRACT

In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM's dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug's melting point should give a 3-4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM's dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate.

14.
J Pharm Sci ; 109(2): 1035-1042, 2020 02.
Article in English | MEDLINE | ID: mdl-31610180

ABSTRACT

In this work, a novel risk-based methodology for lot release is proposed. Its objective is to assess the risk that a lot declared to have passed truly meets product specifications. The methodology consists of 3 parts: adaptive sample size determination, estimation of the probability that the product was within specifications, and the lot-release decision. The methodology provides a probabilistic statement about the true quality of the batch. Having a probability estimate is the essential condition of risk-based decision-making. We demonstrate the proposed methodology on experimental data generated from 17 immediate-release solid oral drug products from a number of different manufacturers with 5 to 10 lots per manufacturer.


Subject(s)
Sample Size
15.
Front Neurol ; 10: 939, 2019.
Article in English | MEDLINE | ID: mdl-31555199

ABSTRACT

Objective: To characterize the clinical, EEG, and neuroimaging profiles of transient epileptic amnesia (TEA). Methods: We performed a retrospective analysis of patients diagnosed with TEA at the Mayo Clinic Minnesota from January 1, 1998 to September 21, 2017. Diagnostic criteria included the presence of recurrent episodes of transient amnesia with preservation of other cognitive functions and evidence for epilepsy [epileptiform abnormalities on EEG, clinical features of seizures, or symptomatic response to anti-seizure medications (ASMs)]. Results: Nineteen patients were identified (14 men, 5 women) with median onset age 66 years and median time to diagnosis 2 years. Thirteen patients (68%) reported persistent cognitive/behavioral symptoms, including 4 (21%) for whom these were the chief presenting complaints. EEG revealed epileptiform abnormalities involving the frontal and/or temporal regions in 12/19 individuals (63%), including activation during sleep in all of these cases. In numerous cases, sleep and prolonged EEG evaluations identified abnormalities not previously seen on shorter or awake-state studies. Brain MRI revealed focal abnormalities in only 4/19 cases (21%). FDG-PET identified focal hypometabolism in 2/8 cases where it was performed, both involving the frontal and/or temporal regions. Anti-seizure therapy, most often with a single agent, resulted in improvement (reduction in spell frequency and/or subjective improvement in interictal cognitive/behavioral complaints) in all 17 cases with available follow-up. Conclusions: TEA is a treatable cause of amnestic spells in older adults. This syndrome is frequently associated with persistent interictal cognitive/behavioral symptoms and thus can be mistaken for common mimics. In the appropriate clinical context, our findings support the use of early prolonged EEG with emphasis on sleep monitoring as a key diagnostic tool. FDG-PET may also complement MRI in distinguishing TEA from neurodegenerative disease when suspected.

16.
Acta Crystallogr C Struct Chem ; 75(Pt 9): 1213-1219, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31484808

ABSTRACT

Phenytoin sodium, a salt of 5,5-diphenylimidazolidine-2,4-dione, or phenytoin, is commercially available in various dosage forms for its anti-epileptic properties to treat and prevent seizures. The title compound, poly[aquatris(µ3-4,4-diphenyl-2,5-dioxoimidazolidin-1-ido)trimethanoltrisodium(I)], [Na3(C15H11N2O2)3(CH4O)3(H2O)1.08]n, a methanol solvate and hydrate of phenytoin sodium, forms a modulated crystal structure that consists of a supercell made up of three close-to-identical repeat units. Each of the basic fragments consists of one phenytoin anion, a sodium cation, and either a methanol, or a methanol and a water molecule coordinated to the sodium ion, yielding a formula unit of Na(C15H11N2O2)(CH3OH)x(H2O)y for each of the three segments (x, y = 0 or 1; x + y = 1 or 2). Modulation along the b axis is introduced due to the presence or absence of water or methanol molecules at sodium and by the alternating torsion angles of one of the two phenytoin phenyl rings. Individual segments within the asymmetric unit are linked by covalent Na-O and Na-N bonds, with each sodium ion coordinated to one anionic amide N atom and three keto O atoms. The Na-N and one of the Na-O bonds connect (C15H11N2O2)·Na units along the modulation direction, creating an infinite [(C15H11N2O2)·Na]n chain that is further stabilized by intramolecular N-H...O hydrogen bonding parallel to [010]. The second Na-O bond connects this chain with a symmetry-equivalent copy of itself created by a screw-axis operation, yielding double strands of [(C15H11N2O2)·Na]n chains. Two of these double strands, propagating in opposite directions, constitute the content of the unit cell. Neighboring double strands are connected with each other to form layers perpendicular to the a axis, tethered together via O-H...O hydrogen bonds involving the water and methanol molecules. In addition to modulation, each of the repeat units also exhibits disorder of the modulated segments. Phenyl rings of each repeat unit are rotationally disordered, and sodium-coordinated methanol and water molecules are also positionally disordered and/or partially occupied. The solvated structure reported here, while not matching the patterns reported for any of the known forms of phenytoin sodium, does provide a first insight into the complications and complexities involved in resolving the structure of anhydrous phenytoin sodium.

17.
AAPS PharmSciTech ; 20(3): 140, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30868291

ABSTRACT

Facilitating utility of prior knowledge to accelerate evidence-based new drug development is a focus of several communities of knowledge, such as clinical pharmacology. For example, progress has been made via modeling and simulation of pharmacokinetic and pharmacodynamic relationships in the more effective use of "End of Phase 2" regulatory meetings for a New Drug Application (NDA). Facilitating utility of prior "Chemistry, Manufacturing, and Controls" (CMC) knowledge to accelerate new drug development and regulatory review process is also a topic of significant interest. This paper focuses on facilitating the utility of prior pharmaceutical formulation knowledge to accelerate drug product development and regulatory review of generic and biosimilar products. This knowledge is described as New Prior Knowledge (NPK) because research is often needed to fill ontological (i.e., the domain of connectivity between concepts and phenomena), epistemological (i.e., distinguishing knowledge or justified belief from the opinion), and methodological gaps in information derived a decade or so ago. The corporate economic advantages of such knowledge are derived, in part, when significant portions remain a trade secret. The proposed NPK seeks to generate knowledge about critical aspects of pharmaceutical quality and failure modes to place it in the public domain and to facilitate accelerated and more confident development and regulatory review of generic products. The paradoxical combination of "new" and "prior knowledge" is chosen deliberately to highlight both a distinction from proprietary and trade secret information and to acknowledge certain historical dogmas inherent in the current practices. Considerations for operationalizing NPK are also summarized.


Subject(s)
Pharmaceutical Preparations , Therapeutic Equivalency , Administration, Intranasal , Biosimilar Pharmaceuticals , Drug Development , Drugs, Generic , Enoxaparin/administration & dosage , Humans , Mometasone Furoate/administration & dosage , Thyroxine/administration & dosage
18.
AAPS PharmSciTech ; 20(1): 39, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30604134

ABSTRACT

Levothyroxine sodium pentahydrate (LEVO) tablets have been on the US market since the mid-twentieth century and remain the most highly prescribed product. Unfortunately, levothyroxine sodium tablets have also been one of the most highly recalled products due to potency and dissolution failures on stability. In 2008, the assay limits were tightened, yet the recalls did not decline, which highlights the serious quality concerns remaining to be elucidated. The aim of the present investigation was to test the hypothesis that the solid-state physical instability of LEVO precedes the chemical instability leading to product failure. The failure mode was hypothesized to be the dehydration of the crystal hydrate, when exposed to certain humidity and temperature conditions, followed by the oxidation of the API through vacated channels. It was previously reported by the authors that LEVO degradation occurred in the presence of oxygen at a low relative humidity (RH). Furthermore, powder X-ray diffractometry shows changes in the crystal lattice of LEVO initially and through the dehydration stages. Storage of LEVO at RT and 40 °C at 4-6% RH for 12 days shows a decrease in d-spacing of the (00 l) planes. Based on a structure solution from the powder data of the dehydrated material, the basic packing motif persists to varying degrees even when fully dehydrated along with disordering. Therefore, the crystal structure changes of LEVO depend on RH and temperature and are now explicable at the structural level for the first time. This exemplifies the dire need for "new prior knowledge" in generic product development.


Subject(s)
Desiccation/methods , Thyroxine/chemistry , Thyroxine/pharmacokinetics , Crystallization , Drug Stability , Humidity , Powders , Tablets , Temperature , X-Ray Diffraction/methods
19.
Pharm Res ; 35(7): 140, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29748722

ABSTRACT

PURPOSE: To study and elucidate the effect of the intensity and duration of processing stresses on the possible solid-state changes during a hot melt extrusion granulation process. METHODS: Blends of α-indomethacin and PEG 3350 (w/w 4:1) were granulated using various screw sizes/designs on the melt extruder under different temperature regimes. Differential Scanning Calorimetry and X-ray Powder Diffraction were employed for characterization. The dissolution behavior of the pure polymorphs and the resulting granules was determined using in-situ fiber optic UV testing system. An XRPD quantitation method using Excel full pattern fitting was developed to determine the concentration of each constituent (amorphous, α and γ indomethacin and PEG) in samples collected from each functioning zone and in granules. RESULTS: Analysis of in-process samples and granules revealed that higher temperature (≥130°C) and shear stress accelerated the process induced phase transitions from amorphous and/or the α form to γ indomethacin during heating stage. However, rapid cooling resulted in an increased percentage of the α form allowing isolation of the meta-stable form. CONCLUSIONS: By determining the conditions that either prevent or facilitate process induced transformations of IMC polymorphs during melt granulation, a design space was developed to control the polymorph present in the resulting granules. This represents the conditions necessary to balance the thermodynamic relationships between the polymorphs of the IMC system and the kinetics of the possible transformations as a function of the processing stresses.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical/methods , Hot Temperature , Indomethacin/chemistry , Polyethylene Glycols/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Indomethacin/metabolism , Polyethylene Glycols/metabolism , Solubility , X-Ray Diffraction/methods
20.
Pharm Res ; 35(2): 39, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29392513

ABSTRACT

PURPOSE: The purpose of the research described herein was to develop a kinetic model for quantifying the effects of conditional and compositional variations on non-covalent polymorphic and covalent chemical transformations of gabapentin. METHODS: Kinetic models that describe the relationship between polymorphs and degradation product in a series of sequential or parallel steps were devised based on analysis of the resultant concentration time profiles. Model parameters were estimated using non-linear regression and Bayesian methods and evaluated in terms of their quantitative relationship to compositional and conditional variations. RESULTS: The model was constructed in which co-milling gabapentin with excipients determined three physically-initial concentrations (II0*, II0 and III0) and one chemically-initial concentration (lactam0). For chemical transitions, no humidity effect was present but the catalytic effects of excipients on the conversion of II and III➔lactam were observed. For physical transition, excipient primarily influenced the physical state transition of III➔II through its ability to interact with humidity. CONCLUSIONS: This model was shown to be robust to quantitatively account for the effects of temperature, humidity and excipient on rate constants associated with kinetics for each physical and chemical transition.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Gabapentin/chemistry , Models, Chemical , Chemistry, Pharmaceutical , Crystallization , Drug Stability , Humidity , Kinetics , Stress, Mechanical , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL