Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
BMC Genomics ; 22(1): 775, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34717545

ABSTRACT

BACKGROUND: The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS: We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION: This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.


Subject(s)
Gastrointestinal Microbiome , Spinal Cord Injuries , Animals , Bacteria , Spinal Cord , Swine , Swine, Miniature
3.
J Neurotrauma ; 38(21): 2937-2955, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34011164

ABSTRACT

After acute traumatic spinal cord injury (SCI), the spinal cord can swell to fill the subarachnoid space and become compressed by the surrounding dura. In a porcine model of SCI, we performed a duraplasty to expand the subarachnoid space around the injured spinal cord and evaluated how this influenced acute intraparenchymal hemodynamic and metabolic responses, in addition to histological and behavioral recovery. Female Yucatan pigs underwent a T10 SCI, with or without duraplasty. Using microsensors implanted into the spinal cord parenchyma, changes in blood flow (ΔSCBF), oxygenation (ΔPO2), and spinal cord pressure (ΔSCP) during and after SCI were monitored, alongside metabolic responses. Behavioral recovery was tested weekly using the Porcine Injury Behavior Scale (PTIBS). Thereafter, spinal cords were harvested for tissue sparing analyses. In both duraplasty and non-animals, the ΔSCP increased ∼5 mm Hg in the first 6 h post-injury. After this, the SCP appeared to be slightly reduced in the duraplasty animals, although the group differences were not statistically significant after controlling for injury severity in terms of impact force. During the first seven days post-SCI, the ΔSCBF or ΔPO2 values were not different between the duraplasty and control animals. Over 12 weeks, there was no improvement in hindlimb locomotion as assessed by PTIBS scores and no reduction in tissue damage at the injury site in the duraplasty animals. In our porcine model of SCI, duraplasty did not provide any clear evidence of long-term behavioral or tissue sparing benefit after SCI.


Subject(s)
Dura Mater/surgery , Plastic Surgery Procedures , Spinal Cord Injuries/surgery , Animals , Behavior, Animal , Disease Models, Animal , Female , Hemodynamics , Recovery of Function , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Swine , Thoracic Vertebrae
4.
J Neurotrauma ; 38(9): 1306-1326, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33499736

ABSTRACT

There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI. An iterative process to develop the protocol to perform urodynamics in female Yucatan minipigs began with a group of spinally intact, anesthetized pigs. Subsequently, urodynamic studies were performed in a group of awake, lightly restrained pigs, before and after a contusion-compression SCI at the T2 or T9-T11 spinal cord level. Bladder tissue was obtained for histological analysis at the end of the study. All anesthetized pigs had bladders that were acontractile, which resulted in overflow incontinence once capacity was reached. Uninjured, conscious pigs demonstrated appropriate relaxation and contraction of the external urethral sphincter during the voiding phase. SCI pigs demonstrated neurogenic detrusor overactivity and a significantly elevated post-void residual volume. Relative to the control, SCI bladders were heavier and thicker. The developed urodynamics protocol allows for repetitive evaluation of lower urinary tract function in pigs at different time points post-SCI. This technique manifests the potential for using the pig as an intermediary, large animal model for translational studies in NLUTD.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae/injuries , Urinary Tract/physiopathology , Urodynamics/physiology , Animals , Female , Spinal Cord Injuries/pathology , Swine , Swine, Miniature , Urinary Bladder/innervation , Urinary Bladder/pathology , Urinary Bladder/physiopathology , Urinary Tract/pathology
5.
J Physiol ; 598(5): 929-942, 2020 03.
Article in English | MEDLINE | ID: mdl-31876952

ABSTRACT

KEY POINTS: We have developed a novel porcine model of high-thoracic midline contusion spinal cord injury (SCI) at the T2 spinal level. We describe this model and the ensuing cardiovascular and neurohormonal responses, and demonstrate the model is efficacious for studying clinically relevant cardiovascular dysfunction post-SCI. We demonstrate that the high-thoracic SCI model, but not a low-thoracic SCI model, induces persistent hypotension along with a gradual reduction in plasma noradrenaline and increases in plasma aldosterone and angiotensin II. We additionally conducted a proof-of-concept long-term (12 weeks) survival study in animals with T2 contusion SCI demonstrating the potential utility of this model for not only acute experimentation but also long-term drug studies prior to translation to the clinic. ABSTRACT: Cardiovascular disease is a leading cause of morbidity and mortality in the spinal cord injury (SCI) population, especially in those with high-thoracic or cervical SCI. With this in mind, we aimed to develop a large animal (porcine) model of high-thoracic (T2 level) contusion SCI and compare the haemodynamic and neurohormonal responses of this injury against a low-thoracic (T10 level) model. Ten Yorkshire pigs were randomly subjected to 20 cm weight drop contusion SCI at either the T2 or the T10 spinal level. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were continuously monitored until 4 h post-SCI. Plasma noradrenaline (NA), aldosterone and angiotensin II (ANGII) were measured pre-SCI and at 30, 60, 120 and 240 min post-SCI. Additionally, two Yucatan pigs were subjected to T2-SCI and survived up to 12 weeks post-injury to demonstrate the efficacy of this model for long-term survival studies. Immediately after T2-SCI, SBP, MAP and HR increased (P < 0.0001). Between decompression (5 min post-SCI) and 30 min post-decompression in T2-SCI, SBP and MAP were lower than pre-SCI (P < 0.038). At 3 and 4 h after T2-SCI, SBP remained lower than pre-SCI (P = 0.048). After T10-SCI, haemodynamic indices remained largely unaffected. Plasma NA was lower in T2- vs. T10-SCI post-SCI, whilst aldosterone and ANGII were higher. Both chronically injured pigs demonstrated a vast reduction in SBP at 12 weeks post-SCI. Our model of T2-SCI causes a rapid and sustained alteration in neurohormonal control and cardiovascular function, which does not occur in the T10 model.


Subject(s)
Cardiovascular System , Spinal Cord Injuries , Animals , Blood Pressure , Disease Models, Animal , Hemodynamics , Spinal Cord , Swine
6.
J Neurotrauma ; 36(21): 3005-3017, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30816064

ABSTRACT

One of the challenges associated with conducting experiments in animal models of traumatic spinal cord injury (SCI) is inducing a consistent injury with minimal variability in the degree of tissue damage and resultant behavioral and biochemical outcomes. We evaluated how the variability in morphometry of the spinal cord and surrounding cerebrospinal fluid (CSF) contributes to the variability in behavioral and histological outcomes in our porcine model of SCI. Using intraoperative ultrasound imaging, spinal cord morphometry was assessed in seven Yucatan minipigs undergoing a weight-drop T10 contusion-compression injury. Bivariate and multi-variate analysis and modeling were used to identify native morphometrical determinants of interanimal variability in histological and behavioral outcomes. The measured biomechanical impact parameters did not correlate with the histological measures or hindlimb locomotor behavior (Porcine Thoracic Injury Behavior Scale). In contrast, clear associations were revealed between CSF layer morphometry and the amount of white matter and tissue sparing. Specifically, the dorsoventral diameter of the dural sac and ventral CSF space were strong predictors of behavioral and histological outcome and together explained ≥95.0% of the variance in these parameters. In addition, a dorsoventral diameter of the spinal cord less than 5.331 mm was a strong contributing factor to poor behavioral recovery over 12 weeks. These results indicate that interanimal variability in cord morphometry provides a potential biological explanation for the observed heterogeneity in histological and behavioral outcomes. Such knowledge is helpful for appropriately balancing experimental groups, and/or varying impact parameters to match cord and CSF layer dimensions for future studies.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries/pathology , Spinal Cord/anatomy & histology , Animals , Dura Mater/anatomy & histology , Female , Recovery of Function , Swine , Swine, Miniature
7.
Matrix Biol ; 59: 23-38, 2017 05.
Article in English | MEDLINE | ID: mdl-27471094

ABSTRACT

Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. SUMMARY: We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues.


Subject(s)
CCN Intercellular Signaling Proteins/chemistry , Genetic Vectors/metabolism , Matrix Metalloproteinase 14/chemistry , Nephroblastoma Overexpressed Protein/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Binding Sites , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , HeLa Cells , Humans , MCF-7 Cells , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Models, Molecular , Nephroblastoma Overexpressed Protein/genetics , Nephroblastoma Overexpressed Protein/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Two-Hybrid System Techniques
8.
Trends Parasitol ; 32(7): 515-521, 2016 07.
Article in English | MEDLINE | ID: mdl-27142564

ABSTRACT

Intracellular protozoan parasites are an extremely important class of pathogens that cause a spectrum of diseases in human and animal hosts. There is a growing body of evidence suggesting that protozoan parasites, like other prokaryotic and viral pathogens, manipulate host cells via epigenetic modifications of the host genome that alter transcription and corresponding signaling pathways. In light of these data, we examine the role of epigenetics in downregulation of host macrophages by Leishmania that could potentially lead to a permanent state of inactivation, thus favoring pathogen survival and disease progression.


Subject(s)
Epigenesis, Genetic , Host-Parasite Interactions/genetics , Leishmania/physiology , Macrophages/parasitology , Animals , Genome , Humans , Models, Biological , Signal Transduction
9.
Data Brief ; 7: 299-310, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26981551

ABSTRACT

The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265.

10.
Matrix Biol ; 49: 37-60, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26407638

ABSTRACT

Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with leucine locked in S1'. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.


Subject(s)
Matrix Metalloproteinases/chemistry , Matrix Metalloproteinases/metabolism , Peptide Library , Proteomics/methods , Amino Acid Sequence , Catalytic Domain , Chromatography, Liquid , Humans , Models, Molecular , Molecular Docking Simulation , Substrate Specificity , Tandem Mass Spectrometry
11.
J Biol Chem ; 286(36): 31418-24, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21768085

ABSTRACT

Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.


Subject(s)
Matrix Metalloproteinase 16/physiology , Myelin Proteins/metabolism , Myelin Sheath , Receptors, Cell Surface/metabolism , Animals , Cells, Cultured , GPI-Linked Proteins/analysis , GPI-Linked Proteins/metabolism , Humans , Hydrolysis , Metallothionein 3 , Mice , Myelin Proteins/analysis , Neurons/cytology , Neurons/physiology , Nogo Receptor 1 , Peptide Fragments/analysis , Rats , Receptors, Cell Surface/analysis
12.
J Biol Chem ; 286(39): 34271-85, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21784845

ABSTRACT

Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed.


Subject(s)
Bone Neoplasms/metabolism , Cell Communication , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/metabolism , Matrix Metalloproteinase 13/biosynthesis , Neoplasm Proteins/biosynthesis , Osteoblasts/metabolism , Animals , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Line, Tumor , Coculture Techniques , Female , Gene Expression Profiling , Humans , Mammary Neoplasms, Animal/pathology , Mice , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Osteoblasts/pathology
13.
Dis Model Mech ; 3(5-6): 317-32, 2010.
Article in English | MEDLINE | ID: mdl-20223936

ABSTRACT

Innate regulatory networks within organs maintain tissue homeostasis and facilitate rapid responses to damage. We identified a novel pathway regulating vessel stability in tissues that involves matrix metalloproteinase 14 (MMP14) and transforming growth factor beta 1 (TGFbeta(1)). Whereas plasma proteins rapidly extravasate out of vasculature in wild-type mice following acute damage, short-term treatment of mice in vivo with a broad-spectrum metalloproteinase inhibitor, neutralizing antibodies to TGFbeta(1), or an activin-like kinase 5 (ALK5) inhibitor significantly enhanced vessel leakage. By contrast, in a mouse model of age-related dermal fibrosis, where MMP14 activity and TGFbeta bioavailability are chronically elevated, or in mice that ectopically express TGFbeta in the epidermis, cutaneous vessels are resistant to acute leakage. Characteristic responses to tissue damage are reinstated if the fibrotic mice are pretreated with metalloproteinase inhibitors or TGFbeta signaling antagonists. Neoplastic tissues, however, are in a constant state of tissue damage and exhibit altered hemodynamics owing to hyperleaky angiogenic vasculature. In two distinct transgenic mouse tumor models, inhibition of ALK5 further enhanced vascular leakage into the interstitium and facilitated increased delivery of high molecular weight compounds into premalignant tissue and tumors. Taken together, these data define a central pathway involving MMP14 and TGFbeta that mediates vessel stability and vascular response to tissue injury. Antagonists of this pathway could be therapeutically exploited to improve the delivery of therapeutics or molecular contrast agents into tissues where chronic damage or neoplastic disease limits their efficient delivery.


Subject(s)
Blood Vessels/enzymology , Blood Vessels/pathology , Matrix Metalloproteinase 14/metabolism , Transforming Growth Factor beta/metabolism , Aging/pathology , Animals , Fibrillar Collagens/metabolism , Homeostasis , Matrix Metalloproteinase 14/deficiency , Mice , Models, Biological , Mustard Plant , Plant Oils , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Skin Neoplasms/blood supply , Skin Neoplasms/pathology , Stromal Cells/enzymology , Stromal Cells/pathology , Vascular Resistance
14.
Methods Mol Biol ; 622: 451-70, 2010.
Article in English | MEDLINE | ID: mdl-20135298

ABSTRACT

Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.


Subject(s)
Isotope Labeling/methods , Matrix Metalloproteinases/metabolism , Proteomics/methods , Animals , Cells, Cultured , Chromatography, Liquid , Humans , Mass Spectrometry , Peptides/metabolism , Proteins/analysis , Reproducibility of Results , Statistics as Topic , Substrate Specificity
15.
Biochim Biophys Acta ; 1803(1): 39-54, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19800373

ABSTRACT

The biological roles of the matrix metalloproteinases (MMPs) have been traditionally associated with the degradation and turnover of most of the components of the extracellular matrix (ECM). This functional misconception has been used for years to explain the involvement of the MMP family in developmental processes, cell homeostasis and disease, and led to clinical trials of MMP inhibitors for the treatment of cancer that failed to meet their endpoints and cast a shadow on MMPs as druggable targets. Accumulated evidence from a great variety of post-trial MMP degradomics studies, ranging from transgenic models to recent state-of-the-art proteomics screens, is changing the dogma about MMP functions. MMPs regulate cell behavior through finely tuned and tightly controlled proteolytic processing of a large variety of signaling molecules that can also have beneficial effects in disease resolution. Moreover, net proteolytic activity relies upon direct interactions between the different protease and protease inhibitor families, interconnected in a complex protease web, with MMPs acting as key nodal components. Such complexity renders simple interpretation of Mmp knockout mice very difficult. Indeed, the phenotype of these models reveals the response of a complex system to the loss of one protease rather than necessarily a direct effect of the lack of functional activity of a protease. Such a shift in the MMP functional paradigm, together with the difficulties associated with current methods of studying proteases this highlights the need for new high content degradomics approaches to uncover and annotate MMP activities in vivo and identify novel interactions within the protease web. Integration of these techniques with specifically designed animal models for final validation should lay the foundations for the development of new inhibitors that specifically target disease-related MMPs and/or their upstream effectors that cause deleterious effects in disease, while sparing MMP functions that are protective.


Subject(s)
Matrix Metalloproteinases/metabolism , Models, Animal , Proteomics , Animals , Extracellular Matrix/enzymology , Mice , Signal Transduction , Substrate Specificity
16.
Curr Opin Cell Biol ; 21(5): 645-53, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19616423

ABSTRACT

Proteomics encompasses powerful techniques termed 'degradomics' for unbiased high-throughput protease substrate discovery screens that have been applied to an important family of extracellular proteases, the matrix metalloproteinases (MMPs). Together with the data generated from genetic deletion and transgenic mouse models and genomic profiling, these screens can uncover the diverse range of MMP functions, reveal which MMPs and MMP-mediated pathways exacerbate pathology, and which are involved in protection and the resolution of disease. This information can be used to identify and validate candidate drug targets and antitargets, and is critical for the development of new inhibitors of MMP function. Such inhibitors may target either the MMP directly in a specific manner or pathways upstream and downstream of MMP activity that are mediating deleterious effects in disease. Since MMPs do not operate alone but are part of the 'protease web', it is necessary to use system-wide approaches to understand MMP proteolysis in vivo, to discover new biological roles and their potential for therapeutic modification.


Subject(s)
Matrix Metalloproteinases/metabolism , Animals , Drug Discovery , Humans , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/genetics , Mice , Protease Inhibitors/pharmacology , Proteomics , Signal Transduction/drug effects , Substrate Specificity
17.
Biochem J ; 403(3): 553-63, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17217338

ABSTRACT

We previously reported that CS (chondroitin sulfate) GAG (glycosaminoglycan), expressed on MCSP (melanoma-specific CS proteoglycan), is important for regulating MT3-MMP [membrane-type 3 MMP (matrix metalloproteinase)]-mediated human melanoma invasion and gelatinolytic activity in vitro. In the present study, we sought to determine if CS can directly enhance MT3-MMP-mediated activation of pro-MMP-2. Co-immunoprecipitation studies suggest that MCSP forms a complex with MT3-MMP and MMP-2 on melanoma cell surface. When melanoma cells were treated with betaDX (p-nitro-beta-D-xylopyranoside) to inhibit coupling of CS on the core protein, both active form and proform of MMP-2 were no longer co-immunoprecipitated with either MCSP or MT3-MMP, suggesting a model in which CS directly binds to MMP-2 and presents the gelatinase to MT3-MMP to be activated. By using recombinant proteins, we determined that MT3-MMP directly activates pro-MMP-2 and that this activation requires the interaction of the C-terminal domain of pro-MMP-2 with MT3-MMP. Activation of pro-MMP-2 by suboptimal concentrations of MT3-MMP is also significantly enhanced in the presence of excess C4S (chondroitin 4-sulfate), whereas C6S (chondroitin 6-sulfate) or low-molecular-mass hyaluronan was ineffective. Affinity chromatography studies using CS isolated from aggrecan indicate that the catalytic domain of MT3-MMP and the C-terminal domain of MMP-2 directly bind to the GAG. Thus the direct binding of pro-MMP-2 with CS through the C-domain would present the catalytic domain of pro-MMP-2 to MT3-MMP, which facilitates the generation of the active form of MMP-2. These results suggest that C4S, which is expressed on tumour cell surface, can function to bind to pro-MMP-2 and facilitate its activation by MT3-MMP-expressing tumour cells to enhance invasion and metastasis.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfates/physiology , Enzyme Precursors/metabolism , Gelatinases/metabolism , Matrix Metalloproteinase 16/physiology , Melanoma/metabolism , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Humans , Matrix Metalloproteinase Inhibitors , Protein Structure, Tertiary , Tissue Inhibitor of Metalloproteinase-2/pharmacology , Tumor Cells, Cultured
18.
J Biol Chem ; 281(36): 26528-39, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-16825197

ABSTRACT

The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.


Subject(s)
Hemopexin/metabolism , Matrix Metalloproteinase 15/metabolism , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 2/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Amino Acid Motifs , Animals , Catalytic Domain , Cells, Cultured , Collagen Type I/metabolism , Cricetinae , Culture Media, Conditioned , Enzyme Activation , Humans , Integrins/chemistry , Integrins/metabolism , Matrix Metalloproteinase 14/chemistry , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 15/chemistry , Matrix Metalloproteinase 15/genetics , Matrix Metalloproteinase 2/genetics , Mice , Mice, Knockout , Models, Molecular , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics
19.
Mol Biol Cell ; 16(11): 5215-26, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16135528

ABSTRACT

The proprotein convertases PC5, PACE4 and furin contain a C-terminal cysteine-rich domain (CRD) of unknown function. We demonstrate that the CRD confers to PC5A and PACE4 properties to bind tissue inhibitors of metalloproteinases (TIMPs) and the cell surface. Confocal microscopy and biochemical analyses revealed that the CRD is essential for cell surface tethering of PC5A and PACE4 and that it colocalizes and coimmunoprecipitates with the full-length and C-terminal domain of TIMP-2. Surface-bound PC5A in TIMP-2 null fibroblasts was only observed upon coexpression with TIMP-2. In COS-1 cells, plasma membrane-associated PC5A can be displaced by heparin, suramin, or heparinases I and III and by competition with excess exogenous TIMP-2. Furthermore, PC5A and TIMP-2 are shown to be colocalized over the surface of enterocytes in the mouse duodenum and jejunum, as well as in liver sinusoids. In conclusion, the CRD of PC5A and PACE4 functions as a cell surface anchor favoring the processing of their cognate surface-anchored substrates, including endothelial lipase.


Subject(s)
Membrane Proteins/physiology , Proprotein Convertase 5/metabolism , Serine Endopeptidases/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Animals , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetinae , Cricetulus , Cysteine , Heparitin Sulfate/physiology , Humans , Membrane Proteins/metabolism , Metalloproteases/metabolism , Mice , Proprotein Convertase 5/physiology , Proprotein Convertases , Protein Processing, Post-Translational , Protein Structure, Tertiary/physiology , Serine Endopeptidases/physiology , Transfection
20.
J Biol Chem ; 280(3): 2370-7, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15533938

ABSTRACT

The mechanism of triple helical collagen unwinding and cleavage by collagenases in the matrix metalloproteinase (MMP) family is complex and remains enigmatic. Recent reports show that triple helicase activity is initiated by the hemopexin C domain of membrane type 1-MMP, whereas catalytically inactive full-length interstitial collagenase (MMP-1) exhibits full triple helicase functionality pointing to active site determinants that are needed to complete the triple helicase mechanism. In MMP-8, the neutrophil collagenase, a conserved Gly at the S(3)' substrate specificity subsite is replaced by Asn(188) that forms a highly unusual cis bond with Tyr(189), a conserved active site residue in the collagenases. Only in MMP-1 is the S(3)' Gly also replaced, and there too a cis configured Glu-Tyr occurs. Thus, this high energy peptide bond coupled to the canonical Tyr may be important in the collagenolytic process. In a systematic mutagenesis investigation of the MMP-8 S(3)' subsite we found that introducing an S(3)' Gly(188) into MMP-8 reduced collagenolytic efficiency by approximately 30% with a corresponding reduction in cleavage of a synthetic peptide fluorescence resonance energy transfer substrate analogue of the alpha2(I) collagen chain cleavage site. The substitution of Asn(188) to Leu, a hydrophobic residue of similar size to the highly polar Asn and designed to retain the cis bond, revealed the importance of hydrogen bonding to bound substrate with both collagenolytic and peptidic activities reduced approximately 3-fold. In contrast, the specificity for type I collagen of the mutant Y189F dropped 3-fold without any significant alteration in general peptidase activity. Therefore, S(3)' and in particular the hydrogen bonding potential of Tyr(189) is a specific molecular determinant for MMP-8 triple helicase activity. The cis bond connection to Asn(188) juxtaposes these two side chains for closely spaced hydrogen bonding with substrate that improves collagenolytic and general catalytic efficiency that could be exploited for new collagenase-specific inhibitor drugs.


Subject(s)
Asparagine/metabolism , Collagen/metabolism , DNA Helicases/metabolism , Matrix Metalloproteinase 8/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Cricetinae , Hydrogen Bonding , Matrix Metalloproteinase 8/chemistry , Matrix Metalloproteinase 8/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...