Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Appl Pharmacol ; 484: 116866, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367674

ABSTRACT

BACKGROUND: ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS: Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS: It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 µM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION: Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.


Subject(s)
Anilides , Antineoplastic Agents , Neoplasms , Quinolines , Humans , Proto-Oncogene Proteins c-met/pharmacology , Mitoxantrone/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , Drug Resistance, Multiple , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B
2.
Sci Rep ; 13(1): 14685, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673888

ABSTRACT

Oncogenic activation of receptor tyrosine kinases (RTKs) such as MET is associated with cancer initiation and progression. We designed and synthesized a new series of quinazoline derivatives bearing 1,2,3-triazole moiety as targeted anticancer agents. The MET inhibitory effect of synthesized compounds was assessed by homogeneous time-resolved fluorescence (HTRF) assay and western blot analysis. Sulforhodamine B assay was conducted to examine the antiproliferative effects of synthetic compounds against 6 cancer cell lines from different origins including MET-dependent AsPC-1, EBC-1 and MKN-45 cells and also Mia-Paca-2, HT-29 and K562 cells. The growth inhibitory effect of compounds in a three-dimensional spheroid culture was examined by acid phosphatase (APH) assay, while apoptosis induction was evaluated by Annexin V/propidium iodide method. Compound 8c bearing p-methyl benzyl moiety on the triazole ring exhibited the highest MET inhibitory capacity among tested agents that was further confirmed by western blot findings. Derivatives 8c and 8h exhibited considerable antiproliferative effects against all tested cell lines, with more inhibitory effects against MET-positive cells with IC50 values as low as 6.1 µM. These two agents also significantly suppressed cell growth in spheroid cultures and induced apoptosis in MET overexpressing AsPC-1 cells. Moreover, among a panel of 24 major oncogenic kinases, the PDGFRA kinase was identified as a target of 8c and 8h compounds. The docking study results of compounds 8c and 8h were in agreement with experimental findings. The results of the present study suggest that quinazoline derivatives bearing 1,2,3-triazole moiety may represent promising targeted anticancer agents.


Subject(s)
Apoptosis , Receptor Protein-Tyrosine Kinases , Annexin A5 , Biological Assay , Blotting, Western
3.
Eur J Pharmacol ; 938: 175395, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36410418

ABSTRACT

c-Met receptor tyrosine kinase has recently emerged as an important target with therapeutic implications in pancreatic cancer. In this study, we carried out a docking virtual screening on an in-house library of 441 synthesized compounds and selected the compounds with the best interactions with the c-Met protein to be subjected to experimental tests. Ten compounds belonging to 3 different classes of chemical structures were selected for this purpose and their antiproliferative effects were studied against 4 pancreatic ductal adenocarcinoma (PDAC) cell lines including AsPC-1, Suit-2, Panc-1 and Mia-Paca-2 cells, primary PDAC cells and also c-Met amplified EBC-1 cell line by sulforhodamine-B assay. Apoptosis induction was examined by Hoechst 33258 staining and annexin V-FITC/propidium iodide flow cytometric assay. The best compound was also assayed in three-dimensional cultures of AsPC-1 cells and its c-Met inhibitory potential was studied by immunoblotting and a homogenous time resolved fluorescence (HTRF) assay. The compound with a phenanthrotriazine hydrazinyl scaffold bearing nitrophenyl pendant (PhTH) was the most active derivative, with IC50 values in the range of 5-8 µM. This compound exerted antiproliferative effect against AsPC-1 cells also in the presence of hepatocyte growth factor (HGF). PhTH induced apoptosis, dose-dependently inhibited spheroid growth, inhibited c-Met activity in cell-free HTRF assay and also inhibited the phosphorylation of c-Met and its downstream effector ERK1/2 in AsPC-1 cells. Molecular docking and dynamics simulation and MM-PBSA analysis confirmed close interactions of PhTH with c-Met kinase domain. Some of the tested compounds in this study seem to be potential c-Met inhibitors with promising activities against PDAC cells.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proto-Oncogene Proteins c-met , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Pancreatic Neoplasms
4.
Front Chem ; 10: 969559, 2022.
Article in English | MEDLINE | ID: mdl-36465863

ABSTRACT

The advent of novel receptor tyrosine kinase inhibitors has provided an important therapeutic tool for cancer patients. In this study, a series of quinazolinone hydrazide triazole derivatives were designed and synthesized as novel MET (c-MET) receptor tyrosine kinase inhibitors. The antiproliferative effect of the synthesized compounds was examined against EBC-1, A549, HT-29 and U-87MG cells by MTT assay. MET kinase inhibitory effect was tested by a Homogenous Time Resolved Fluorescence (HTRF) assay. The antiproliferative effect of compounds in a three-dimensional spheroid culture was studied by acid phosphatase (APH) assay, while apoptosis induction was examined by Hoechst 33258 staining. We found that compound CM9 bearing p-bromo benzyl pendant inhibited MET kinase activity at the concentrations of 10-50 µM (% Inhibition = 37.1-66.3%). Compound CM9 showed antiproliferative effect against cancer cells, in particular lung cancer cells with MET amplification (EBC-1) with an IC50 value of 8.6 µM. Moreover, this derivative inhibited cell growth in spheroid cultures in a dose-dependent manner and induced apoptosis in cancer cells. Assessment of inhibitory effect of CM9 against a panel of 18 different protein kinases demonstrated that this compound also inhibits ALK, AXL, FGFR1, FLT1 (VEGFR1) and FLT4 (VEGFR3) more than 50% at 25 µM. Finally, molecular docking and dynamics simulation corroborated the experimental findings and showed critical structural features for the interactions between CM9 and target kinases. The findings of this study present quinazolinone hydrazide triazole derivatives as kinase inhibitors with considerable anticancer effects.

5.
Crit Rev Oncol Hematol ; 176: 103749, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35728737

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Pancreatic Neoplasms
6.
Sci Rep ; 11(1): 3644, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574356

ABSTRACT

Aberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5-25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers.


Subject(s)
Imidazoles/pharmacology , Lung Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Imidazoles/chemical synthesis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/genetics
7.
Eur J Pharmacol ; 894: 173850, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33428899

ABSTRACT

Cancer continues to be the second leading cause of death worldwide. Discovery of novel therapeutic agents has crucial importance for improvement of our medical management capabilities. Dysregulation of the MET receptor tyrosine kinase pathway plays an important role in cancer progression, making this receptor an attractive molecular target for anticancer drug discovery. In this study, twenty-seven 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives were synthesized and their cancer cell growth inhibitory activity was examined against MCF-7, HT-29 and MOLT-4 cells and also NIH/3T3 non-cancer cells by MTT assay. The antiproliferative effect of the most potent derivatives were tested against MET-dependent EBC-1 and MKN-45, lung and gastric cancer cell lines, respectively. MET kinase inhibition was measured by a Homogenous Time Resolved Fluorescence (HTRF) Assay. The influence of the test compounds on cell cycle was examined by RNase/PI flow cytometric assay. A number of compounds exhibited considerable antiproliferative effects against breast and colon cancer and leukemia cell lines, relatively sparing non-cancer cells. Some derivatives bearing benzothiazolyl carboxamide moiety at C5 position (15, 21, 23, 31, and 37) showed the highest activities with IC50 values as low as 10.9 µM. These compounds showed antiproliferative effects also against MET-amplified cells and dose-dependently inhibited MET kinase activity. They also induced G0/G1 cell cycle arrest at lower doses and apoptosis at higher doses. Molecular docking and dynamics simulation studies confirmed the interaction of compound 23 with the active site of the MET receptor. These findings demonstrate that 3,4-dihydropyrimidin-2(1H)-one analogues may represent promising targeted anticancer agents.


Subject(s)
Amides/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrimidinones/pharmacology , Amides/chemical synthesis , Animals , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Pyrimidinones/chemical synthesis
8.
Food Chem Toxicol ; 84: 154-60, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26316185

ABSTRACT

The purpose of this study was to investigate the effects of zinc oxide nanoparticles (nZnO) on adult male Wistar rats. Thirty male Wistar rats divided into five groups of six animals each were used for this study. For ten days, Groups one to four continuously received 50, 100, 150 and 200 mg/kg nZnO, respectively. Group five served as the control group. At the end of the study, the rats were sacrificed and histopathological study of the liver and renal tissue, sperm analysis, serum oxidative stress parameters and some liver enzymes were done. The results of this study showed that nZnO at concentration more than 50 mg/kg lead to significant changes in liver enzymes, oxidative stress, liver and renal tissue and sperm quality and quantity. In conclusion, the toxicity of nZnO is more significant when the concentration is increased; however, the use of low doses requires further investigation.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Kidney/drug effects , Liver/drug effects , Metal Nanoparticles/toxicity , Nephritis/chemically induced , Oligospermia/chemically induced , Zinc Oxide/toxicity , Animals , Biomarkers/blood , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Dose-Response Relationship, Drug , Injections, Intraperitoneal , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Liver/physiopathology , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/ultrastructure , Nephritis/metabolism , Nephritis/pathology , Nephritis/physiopathology , Oligospermia/metabolism , Oligospermia/pathology , Oligospermia/physiopathology , Oxidative Stress/drug effects , Oxidoreductases/metabolism , Rats, Wistar , Semen Analysis , Tissue Distribution , Toxicity Tests, Subacute , Toxicokinetics , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry
9.
Iran Biomed J ; 19(2): 96-101, 2015.
Article in English | MEDLINE | ID: mdl-25864814

ABSTRACT

BACKGROUND: A high-fat diet (HFD) promotes the oxidative stress formation, which in turn has hazardous effects on reproductive system and fertility. The present study examines the potential positive effects of a restricted high-fat diet (RHFD) and antioxidants consumption on sperm parameters and testis tissue in rats. METHODS: Male rats (n = 48) were divided into four groups (12 in each group): control group (Cont), HFD group, RHFD, and RHFD with astaxanthin and vitamins E and C group (RHFDA). After 12 weeks, serum analysis and sperm parameters study were performed. Sections of fixed testes were stained with Hematoxilin and Eosin to study the histological changes. A one-way ANOVA was used to compare the data. RESULTS: HFD fed animals presented significant increase in weight load and serum low density lipoprotein (LDL-C) levels (P < 0.05). The sperm count in RHFD was lower than three other groups (P < 0.05) and sperm motility of RHFDA group was significantly higher than HFD and RHFD groups (P < 0.05). The histological study was showed a significant increase in spermatogonium number in RHFDA compared to three other groups (P < 0.05). The number of spermatocyte I and spermatid in RHFD was significantly (P < 0.05) lower than Cont and HFD groups. CONCLUSION: HFD and obesity can affect sperm parameters and spermatogenesis and antioxidants consumption may improve their quality. Although the RHFD is a benefit way in weight loss and decrease of LDL-C of serum, but it is suggested that is not effective on sperm quality improvement.


Subject(s)
Antioxidants/pharmacology , Caloric Restriction , Diet, High-Fat/adverse effects , Infertility, Male/pathology , Lipoproteins, LDL/blood , Oxidative Stress/physiology , Animals , Ascorbic Acid/pharmacology , Body Weight , Male , Obesity/blood , Obesity/pathology , Rats , Rats, Wistar , Sperm Count , Sperm Motility/physiology , Spermatids/physiology , Spermatocytes/physiology , Vitamin E/pharmacology , Xanthophylls/pharmacology
10.
J Reprod Infertil ; 15(1): 22-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24696792

ABSTRACT

BACKGROUND: Prescription of antioxidants might increase the quality of sperm parameters and improve the rate of pregnancy in obese people who suffer from infertility. Therefore, the present study investigated protective effects of vitamin A, E and astaxanthin on sperm parameters and seminiferous tubules epithelium in high-fat diet model. METHODS: Thirty-six numbers of 3 months old albino Wistar rats were divided to control, high-fat diet and high-fat diet with antioxidants groups. After 12 weeks, levels of LDL-C and HDL-C were detected in the groups. Sperm was obtained from the tail of epididymis and its parameters (count, vitality, motility and morphology) were analyzed. Testes were fixed in 10% formalin and after tissue processing, stained with Hematoxylin and Eosine (H&E) for histological evaluation. Data were analyzed by a one-way ANOVA and p < 0.05 was considered significant. RESULTS: Our results indicated that viability, motility and normal morphology of sperm in high-fat diet (HFD) decreased significantly compared to high-fat diet with antioxidant (HFD + A) and the control groups (p < 0.05). Also spermatogonium and the number of Sertoli cells increased significantly in HFD + A compared to the control (p < 0.05). CONCLUSION: As it is shown in our study, application of antioxidants decreased serum triglyceride, cholesterol and HDL-C/LDL-C in high-fat diet model and improved the semen parameters. Therefore, it is suggested that the low quality of sperm can be improved in obese men through antioxidant prescription. Finally, it seems that the antioxidants in obese patients with subfertility or infertility is a new and efficient strategy with few side effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...