Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37870477

ABSTRACT

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Subject(s)
DNA-Binding Proteins , Phytic Acid , Animals , DNA/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/genetics , Ku Autoantigen/metabolism , Mammals/genetics , Humans
2.
Proc Natl Acad Sci U S A ; 119(41): e2205591119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36206368

ABSTRACT

Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-ß aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-ß or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions.


Subject(s)
Parkinson Disease , Synucleinopathies , Amyloid beta-Peptides/metabolism , Animals , Lewy Bodies/metabolism , Mice , Parkinson Disease/metabolism , Protein Aggregates , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity
3.
Nat Commun ; 12(1): 2525, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953191

ABSTRACT

Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.


Subject(s)
DNA Replication/physiology , DNA/chemistry , G-Quadruplexes , Single Molecule Imaging/methods , Animals , Biophysics , Cell Line , DNA Damage , DNA Helicases/metabolism , DNA-Binding Proteins , Genomic Instability , Humans , Recombinant Proteins , Sf9 Cells
4.
Nat Commun ; 12(1): 204, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420051

ABSTRACT

Expansions of CAG/CTG trinucleotide repeats in DNA are the cause of at least 17 degenerative human disorders, including Huntington's Disease. Repeat instability is thought to occur via the formation of intrastrand hairpins during replication, repair, recombination, and transcription though relatively little is known about their structure and dynamics. We use single-molecule Förster resonance energy transfer to study DNA three-way junctions (3WJs) containing slip-outs composed of CAG or CTG repeats. 3WJs that only have repeats in the slip-out show two-state behavior, which we attribute to conformational flexibility at the 3WJ branchpoint. When the triplet repeats extend into the adjacent duplex, additional dynamics are observed, which we assign to interconversion of positional isomers. We propose a branchpoint migration model that involves conformational rearrangement, strand exchange, and bulge-loop movement. This migration has implications for how repeat slip-outs are processed by the cellular machinery, disease progression, and their development as drug targets.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Trinucleotide Repeat Expansion , Trinucleotide Repeats , Biophysics , Fluorescence Resonance Energy Transfer , Humans , Oligonucleotides/chemistry
5.
Elife ; 92020 09 21.
Article in English | MEDLINE | ID: mdl-32956035

ABSTRACT

Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.


Subject(s)
Antineoplastic Agents/pharmacology , DNA , Genome , Uracil , DNA/analysis , DNA/biosynthesis , DNA/chemistry , DNA/genetics , Genome/drug effects , Genome/genetics , Genomics , HCT116 Cells , Humans , Microscopy , Sequence Analysis, DNA , Uracil/analysis , Uracil/biosynthesis , Uracil/chemistry
6.
Nature ; 576(7787): 482-486, 2019 12.
Article in English | MEDLINE | ID: mdl-31827279

ABSTRACT

The most frequently mutated oncogene in cancer is KRAS, which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region1. Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins-each capable of transforming cells-are encoded when KRAS is activated by mutation2. No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes3-5, it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation-depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically.


Subject(s)
Hexokinase/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Allosteric Regulation , Animals , Cell Line, Tumor , Enzyme Activation , Glycolysis , Guanosine Triphosphate/metabolism , Hexokinase/chemistry , Humans , In Vitro Techniques , Isoenzymes/metabolism , Lipoylation , Male , Mice , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Neoplasms/enzymology , Neoplasms/metabolism , Protein Binding , Protein Transport
7.
Nat Commun ; 10(1): 3588, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399561

ABSTRACT

One of the most central questions about the repair of a double-strand DNA break (DSB) concerns how the two free DNA ends are brought together - a step called synapsis. Using single-molecule FRET (smFRET), we show here that both Ku plus XRCC4:DNA ligase IV are necessary and sufficient to achieve a flexible synapsis of blunt DNA ends, whereas either alone is not. Addition of XLF causes a transition to a close synaptic state, and maximum efficiency of close synapsis is achieved within 20 min. The promotion of close synapsis by XLF indicates a role that is independent of a filament structure, with action focused at the very ends of each duplex. DNA-PKcs is not required for the formation of either the flexible or close synaptic states. This model explains in biochemical terms the evolutionarily central synaptic role of Ku, X4L4, and XLF in NHEJ for all eukaryotes.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fluorescence Resonance Energy Transfer , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Models, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Single Molecule Imaging
8.
Microb Cell ; 6(1): 65-101, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30652106

ABSTRACT

Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

9.
Nucleic Acids Res ; 46(21): 11618-11626, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30277520

ABSTRACT

From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye-DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Allosteric Regulation , Fluorescence , Fluorescent Dyes/chemistry , Nucleic Acid Conformation , Single Molecule Imaging , Spectrometry, Fluorescence
10.
Chemphyschem ; 19(5): 551-555, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29316151

ABSTRACT

Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m-1 s-1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks.


Subject(s)
DNA, Single-Stranded/chemistry , Base Pair Mismatch , Base Pairing , DNA, Single-Stranded/genetics , Fluorescence Resonance Energy Transfer , Kinetics , Nanostructures/chemistry
11.
Biochemistry ; 56(37): 4985-4991, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28820590

ABSTRACT

DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.


Subject(s)
DNA, Complementary/chemistry , DNA/chemistry , Models, Molecular , Base Pairing , DNA/metabolism , DNA, Complementary/metabolism , Fluorescence Resonance Energy Transfer , GC Rich Sequence , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Single Molecule Imaging , Spectrometry, Fluorescence
12.
Extremophiles ; 21(2): 369-379, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28074284

ABSTRACT

Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.


Subject(s)
Archaeal Proteins/chemistry , DNA-Binding Proteins/chemistry , RNA, Archaeal/chemistry , RNA-Binding Proteins/chemistry , Sulfolobus solfataricus/chemistry , Archaeal Proteins/metabolism , DNA-Binding Proteins/metabolism , RNA, Archaeal/metabolism , RNA-Binding Proteins/metabolism , Sulfolobus solfataricus/metabolism
13.
Chemphyschem ; 17(21): 3442-3446, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27538128

ABSTRACT

The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.


Subject(s)
Disaccharides/chemical synthesis , Fluorescence , Heparitin Sulfate/chemical synthesis , Carbohydrate Conformation , Disaccharides/chemistry , Heparitin Sulfate/chemistry , Spectrometry, Fluorescence
14.
J Am Chem Soc ; 137(51): 16020-3, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26654490

ABSTRACT

It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems.


Subject(s)
DNA/chemistry , Nucleic Acid Hybridization
15.
Nucleic Acids Res ; 43(22): 10907-24, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26578575

ABSTRACT

Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.


Subject(s)
Archaeal Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , DNA, Single-Stranded/chemistry , Fluorescence Resonance Energy Transfer , Protein Binding , Sulfolobus solfataricus
SELECTION OF CITATIONS
SEARCH DETAIL
...