Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464323

ABSTRACT

Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings detected by our pipeline provide valuable insights into these diseases.

2.
bioRxiv ; 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38045331

ABSTRACT

The sequence-structure-function relationships that ultimately generate the diversity of extant observed proteins is complex, as proteins bridge the gap between multiple informational and physical scales involved in nearly all cellular processes. One limitation of existing protein annotation databases such as UniProt is that less than 1% of proteins have experimentally verified functions, and computational methods are needed to fill in the missing information. Here, we demonstrate that a multi-aspect framework based on protein language models can learn sequence-structure-function representations of amino acid sequences, and can provide the foundation for sensitive sequence-structure-function aware protein sequence search and annotation. Based on this model, we introduce a multi-aspect information retrieval system for proteins, Protein-Vec, covering sequence, structure, and function aspects, that enables computational protein annotation and function prediction at tree-of-life scales.

4.
Nat Biotechnol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679542

ABSTRACT

Exploiting sequence-structure-function relationships in biotechnology requires improved methods for aligning proteins that have low sequence similarity to previously annotated proteins. We develop two deep learning methods to address this gap, TM-Vec and DeepBLAST. TM-Vec allows searching for structure-structure similarities in large sequence databases. It is trained to accurately predict TM-scores as a metric of structural similarity directly from sequence pairs without the need for intermediate computation or solution of structures. Once structurally similar proteins have been identified, DeepBLAST can structurally align proteins using only sequence information by identifying structurally homologous regions between proteins. It outperforms traditional sequence alignment methods and performs similarly to structure-based alignment methods. We show the merits of TM-Vec and DeepBLAST on a variety of datasets, including better identification of remotely homologous proteins compared with state-of-the-art sequence alignment and structure prediction methods.

5.
Nat Biotechnol ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500913

ABSTRACT

Studies using 16S rRNA and shotgun metagenomics typically yield different results, usually attributed to PCR amplification biases. We introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA databases in a consistent, integrated resource. By inserting sequences into a whole-genome phylogeny, we show that 16S rRNA and shotgun metagenomic data generated from the same samples agree in principal coordinates space, taxonomy and phenotype effect size when analyzed with the same tree.

6.
Nat Neurosci ; 26(7): 1208-1217, 2023 07.
Article in English | MEDLINE | ID: mdl-37365313

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Brain-Gut Axis , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Cross-Sectional Studies , Bayes Theorem , Reproducibility of Results , Cytokines
7.
Microbiol Spectr ; 11(3): e0506622, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37042765

ABSTRACT

The gut microbiome is associated with survival in colorectal cancer. Single organisms have been identified as markers of poor prognosis. However, in situ imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the role of these polymicrobial communities in survival, we conducted a nested case-control study in late-stage cancer patients undergoing resection for primary adenocarcinoma. The microbiome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA sequencing. We found a consistent difference in the microbiome between paired tumor and adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference between normal and tumor tissue was associated with prognosis: patients with shorter survival had a larger difference between normal and tumor tissue. Within the tumor tissue, we identified a 39-member community statistic associated with survival; for every log2-fold increase in this value, an individual's odds of survival increased by 20% (odds ratio survival 1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tumor-specific microbiome is associated with survival in late-stage colorectal cancer patients. IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused on the role of single organisms in cancer progression. Recent work has identified specific organisms throughout the intestinal tract, which may affect survival; however, the results are inconsistent. We found differences between the tumor microbiome and the microbiome of the rest of the intestine in patients, and the magnitude of this difference was associated with survival, or, the more like a healthy gut a tumor looked, the better a patient's prognosis. Our results suggest that future microbiome-based interventions to affect survival in CRC will need to target the tumor community.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Case-Control Studies , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Gastrointestinal Microbiome/genetics
8.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778470

ABSTRACT

Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.

9.
Nat Microbiol ; 7(12): 2128-2150, 2022 12.
Article in English | MEDLINE | ID: mdl-36443458

ABSTRACT

Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.


Subject(s)
Microbiota , Animals , Microbiota/genetics , Metagenome , Metagenomics , Earth, Planet , Soil
10.
Curr Protoc ; 1(5): e113, 2021 May.
Article in English | MEDLINE | ID: mdl-33961736

ABSTRACT

Models from machine learning (ML) or artificial intelligence (AI) increasingly assist in guiding experimental design and decision making in molecular biology and medicine. Recently, Language Models (LMs) have been adapted from Natural Language Processing (NLP) to encode the implicit language written in protein sequences. Protein LMs show enormous potential in generating descriptive representations (embeddings) for proteins from just their sequences, in a fraction of the time with respect to previous approaches, yet with comparable or improved predictive ability. Researchers have trained a variety of protein LMs that are likely to illuminate different angles of the protein language. By leveraging the bio_embeddings pipeline and modules, simple and reproducible workflows can be laid out to generate protein embeddings and rich visualizations. Embeddings can then be leveraged as input features through machine learning libraries to develop methods predicting particular aspects of protein function and structure. Beyond the workflows included here, embeddings have been leveraged as proxies to traditional homology-based inference and even to align similar protein sequences. A wealth of possibilities remain for researchers to harness through the tools provided in the following protocols. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. The following protocols are included in this manuscript: Basic Protocol 1: Generic use of the bio_embeddings pipeline to plot protein sequences and annotations Basic Protocol 2: Generate embeddings from protein sequences using the bio_embeddings pipeline Basic Protocol 3: Overlay sequence annotations onto a protein space visualization Basic Protocol 4: Train a machine learning classifier on protein embeddings Alternate Protocol 1: Generate 3D instead of 2D visualizations Alternate Protocol 2: Visualize protein solubility instead of protein subcellular localization Support Protocol: Join embedding generation and sequence space visualization in a pipeline.


Subject(s)
Artificial Intelligence , Deep Learning , Machine Learning , Natural Language Processing , Proteins
11.
mSystems ; 6(2)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33727399

ABSTRACT

Standard workflows for analyzing microbiomes often include the creation and curation of phylogenetic trees. Here we present EMPress, an interactive web tool for visualizing trees in the context of microbiome, metabolome, and other community data scalable to trees with well over 500,000 nodes. EMPress provides novel functionality-including ordination integration and animations-alongside many standard tree visualization features and thus simplifies exploratory analyses of many forms of 'omic data.IMPORTANCE Phylogenetic trees are integral data structures for the analysis of microbial communities. Recent work has also shown the utility of trees constructed from certain metabolomic data sets, further highlighting their importance in microbiome research. The ever-growing scale of modern microbiome surveys has led to numerous challenges in visualizing these data. In this paper we used five diverse data sets to showcase the versatility and scalability of EMPress, an interactive web visualization tool. EMPress addresses the growing need for exploratory analysis tools that can accommodate large, complex multi-omic data sets.

12.
mSystems ; 6(1)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33594005

ABSTRACT

Evaluating microbial community composition through next-generation sequencing has become increasingly accessible. However, metagenomic sequencing data sets provide researchers with only a snapshot of a dynamic ecosystem and do not provide information about the total microbial number, or load, of a sample. Additionally, DNA can be detected long after a microorganism is dead, making it unsafe to assume that all microbial sequences detected in a community came from living organisms. By combining relic DNA removal by propidium monoazide (PMA) with microbial quantification with flow cytometry, we present a novel workflow to quantify live microbial load in parallel with metagenomic sequencing. We applied this method to unstimulated saliva samples, which can easily be collected longitudinally and standardized by passive collection time. We found that the number of live microorganisms detected in saliva was inversely correlated with salivary flow rate and fluctuated by an order of magnitude throughout the day in healthy individuals. In an acute perturbation experiment, alcohol-free mouthwash resulted in a massive decrease in live bacteria, which would have been missed if we did not consider dead cell signal. While removing relic DNA from saliva samples did not greatly impact the microbial composition, it did increase our resolution among samples collected over time. These results provide novel insight into the dynamic nature of host-associated microbiomes and underline the importance of applying scale-invariant tools in the analysis of next-generation sequencing data sets.IMPORTANCE Human microbiomes are dynamic ecosystems often composed of hundreds of unique microbial taxa. To detect fluctuations over time in the human oral microbiome, we developed a novel workflow to quantify live microbial cells with flow cytometry in parallel with next-generation sequencing, and applied this method to over 150 unstimulated, timed saliva samples. Microbial load was inversely correlated with salivary flow rate and fluctuated by an order of magnitude within a single participant throughout the day. Removing relic DNA improved our ability to distinguish samples over time and revealed that the percentage of sequenced bacteria in a given saliva sample that are alive can range from nearly 0% up to 100% throughout a typical day. These findings highlight the dynamic ecosystem of the human oral microbiome and the benefit of removing relic DNA signals in longitudinal microbiome study designs.

14.
Nat Biotechnol ; 39(2): 165-168, 2021 02.
Article in English | MEDLINE | ID: mdl-32868914

ABSTRACT

The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.


Subject(s)
Algorithms , Gastrointestinal Microbiome , Humans , Infant
15.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Article in English | MEDLINE | ID: mdl-33169034

ABSTRACT

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Subject(s)
Algorithms , Gas Chromatography-Mass Spectrometry , Metabolomics , Animals , Anura , Humans
16.
Genome Res ; 31(1): 64-74, 2021 01.
Article in English | MEDLINE | ID: mdl-33239396

ABSTRACT

Dental caries, the most common chronic infectious disease worldwide, has a complex etiology involving the interplay of microbial and host factors that are not completely understood. In this study, the oral microbiome and 38 host cytokines and chemokines were analyzed across 23 children with caries and 24 children with healthy dentition. De novo assembly of metagenomic sequencing obtained 527 metagenome-assembled genomes (MAGs), representing 150 bacterial species. Forty-two of these species had no genomes in public repositories, thereby representing novel taxa. These new genomes greatly expanded the known pangenomes of many oral clades, including the enigmatic Saccharibacteria clades G3 and G6, which had distinct functional repertoires compared to other oral Saccharibacteria. Saccharibacteria are understood to be obligate epibionts, which are dependent on host bacteria. These data suggest that the various Saccharibacteria clades may rely on their hosts for highly distinct metabolic requirements, which would have significant evolutionary and ecological implications. Across the study group, Rothia, Neisseria, and Haemophilus spp. were associated with good dental health, whereas Prevotella spp., Streptococcus mutans, and Human herpesvirus 4 (Epstein-Barr virus [EBV]) were more prevalent in children with caries. Finally, 10 of the host immunological markers were significantly elevated in the caries group, and co-occurrence analysis provided an atlas of potential relationships between microbes and host immunological molecules. Overall, this study illustrated the oral microbiome at an unprecedented resolution and contributed several leads for further study that will increase the understanding of caries pathogenesis and guide therapeutic development.


Subject(s)
Dental Caries , Metagenomics , Microbiota , Bacteria , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Microbiota/genetics
17.
Cancer Discov ; 11(2): 293-307, 2021 02.
Article in English | MEDLINE | ID: mdl-33177060

ABSTRACT

In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs, and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in the stage IIIB-IV tumor-node-metastasis lung cancer group and is associated with poor prognosis, as shown by decreased survival among subjects with early-stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with stage IIIB-IV disease. In addition, this lower airway microbiota signature was associated with upregulation of the IL17, PI3K, MAPK, and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL17 inflammatory phenotype, and activation of checkpoint inhibitor markers. SIGNIFICANCE: Multiple lines of investigation have shown that the gut microbiota affects host immune response to immunotherapy in cancer. Here, we support that the local airway microbiota modulates the host immune tone in lung cancer, affecting tumor progression and prognosis.See related commentary by Zitvogel and Kroemer, p. 224.This article is highlighted in the In This Issue feature, p. 211.


Subject(s)
Adenocarcinoma/mortality , Dysbiosis/complications , Lung Neoplasms/mortality , Adenocarcinoma/complications , Adenocarcinoma/microbiology , Adenocarcinoma/secondary , Animals , Cohort Studies , Disease Models, Animal , Disease Progression , Female , Humans , Lung Neoplasms/complications , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Microbiota , Neoplasm Metastasis , Neoplasm Staging , New York , Proportional Hazards Models , Survival Analysis
18.
mSystems ; 5(4)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32817384

ABSTRACT

Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in particular following antibiotic treatment, remains largely unknown. We employed amplicon 16S rRNA gene sequencing and metabolomics in a murine model system to try and investigate functional roles of the gut microbiome during VREfm colonization. First-order taxonomic shifts between Bacteroidetes and Tenericutes within the gut microbial community composition were detected both in response to pretreatment using ceftriaxone and to subsequent VREfm challenge. Using neural networking approaches to find cooccurrence profiles of bacteria and metabolites, we detected key metabolome features associated with butyric acid during and after VREfm colonization. These metabolite features were associated with Bacteroides, indicative of a transition toward a preantibiotic naive microbiome. This study shows the impacts of antibiotics on the gut ecosystem and the progression of the microbiome in response to colonization with VREfm. Our results offer insights toward identifying potential nonantibiotic alternatives to eliminate VREfm through metabolic reengineering to preferentially select for Bacteroides IMPORTANCE This study demonstrates the importance and power of linking bacterial composition profiling with metabolomics to find the interactions between commensal gut bacteria and a specific pathogen. Knowledge from this research will inform gut microbiome engineering strategies, with the aim of translating observations from animal models to human-relevant therapeutic applications.

19.
mSystems ; 5(3)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576651

ABSTRACT

Microbial diversity in the cystic fibrosis (CF) lung decreases over decades as pathogenic bacteria such as Pseudomonas aeruginosa take over. The dynamics of the CF microbiome and metabolome over shorter time frames, however, remain poorly studied. Here, we analyze paired microbiome and metabolome data from 594 sputum samples collected over 401 days from six adult CF subjects (subject mean = 179 days) through periods of clinical stability and 11 CF pulmonary exacerbations (CFPE). While microbiome profiles were personalized (permutational multivariate analysis of variance [PERMANOVA] r 2 = 0.79, P < 0.001), we observed significant intraindividual temporal variation that was highest during clinical stability (linear mixed-effects [LME] model, P = 0.002). This included periods where the microbiomes of different subjects became highly similar (UniFrac distance, <0.05). There was a linear increase in the microbiome alpha-diversity and in the log ratio of anaerobes to pathogens with time (n = 14 days) during the development of a CFPE (LME P = 0.0045 and P = 0.029, respectively). Collectively, comparing samples across disease states showed there was a reduction of these two measures during antibiotic treatment (LME P = 0.0096 and P = 0.014, respectively), but the stability data and CFPE data were not significantly different from each other. Metabolome alpha-diversity was higher during CFPE than during stability (LME P = 0.0085), but no consistent metabolite signatures of CFPE across subjects were identified. Virulence-associated metabolites from P. aeruginosa were temporally dynamic but were not associated with any disease state. One subject died during the collection period, enabling a detailed look at changes in the 194 days prior to death. This subject had over 90% Pseudomonas in the microbiome at the beginning of sampling, and that level gradually increased to over 99% prior to death. This study revealed that the CF microbiome and metabolome of some subjects are dynamic through time. Future work is needed to understand what drives these temporal dynamics and if reduction of anaerobes correlate to clinical response to CFPE therapy.IMPORTANCE Subjects with cystic fibrosis battle polymicrobial lung infections throughout their lifetime. Although antibiotic therapy is a principal treatment for CF lung disease, we have little understanding of how antibiotics affect the CF lung microbiome and metabolome and how much the community changes on daily timescales. By analyzing 594 longitudinal CF sputum samples from six adult subjects, we show that the sputum microbiome and metabolome are dynamic. Significant changes occur during times of stability and also through pulmonary exacerbations (CFPEs). Microbiome alpha-diversity increased as a CFPE developed and then decreased during treatment in a manner corresponding to the reduction in the log ratio of anaerobic bacteria to classic pathogens. Levels of metabolites from the pathogen P. aeruginosa were also highly variable through time and were negatively associated with anaerobes. The microbial dynamics observed in this study may have a significant impact on the outcome of antibiotic therapy for CFPEs and overall subject health.

20.
NAR Genom Bioinform ; 2(2): lqaa023, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32391521

ABSTRACT

Many tools for dealing with compositional ' 'omics' data produce feature-wise values that can be ranked in order to describe features' associations with some sort of variation. These values include differentials (which describe features' associations with specified covariates) and feature loadings (which describe features' associations with variation along a given axis in a biplot). Although prior work has discussed the use of these 'rankings' as a starting point for exploring the log-ratios of particularly high- or low-ranked features, such exploratory analyses have previously been done using custom code to visualize feature rankings and the log-ratios of interest. This approach is laborious, prone to errors and raises questions about reproducibility. To address these problems we introduce Qurro, a tool that interactively visualizes a plot of feature rankings (a 'rank plot') alongside a plot of selected features' log-ratios within samples (a 'sample plot'). Qurro's interface includes various controls that allow users to select features from along the rank plot to compute a log-ratio; this action updates both the rank plot (through highlighting selected features) and the sample plot (through displaying the current log-ratios of samples). Here, we demonstrate how this unique interface helps users explore feature rankings and log-ratios simply and effectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...