Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38592438

ABSTRACT

The present work investigates the potential role of metformin nanoparticles (MTF-NPs) as a radio-protector against cardiac fibrosis and inflammation induced by gamma radiation via CXCL1/TGF-ß pathway. Lethal dose fifty of nano-metformin was determined in mice, then 21 rats (male albino) were equally divided into three groups: normal control (G1), irradiated control (G2), and MTF-NPs + IRR (G3). The possible protective effect of MTF-NPs is illustrated via decreasing cardiac contents of troponin, C-X-C motif Ligand 1 (CXCL1), tumor growth factor ß (TGF-ß), protein kinase B (AKT), and nuclear factor-κB (NF-κB). Also, the positive effect of MTF-NPs on insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) in heart tissues using immunohistochemical technique is illustrated in the present study. Histopathological examination emphasizes the biochemical findings. The current investigation suggests that MTF-NPs might be considered as a potent novel treatment for the management of cardiac fibrosis and inflammation in patients who receive radiotherapy or workers who may be exposed to gamma radiation.

2.
Int J Biol Macromol ; 262(Pt 2): 130010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336320

ABSTRACT

In this work, gamma irradiation was used to create bimetallic silver­copper oxide nanoparticles (Ag-CuO NPs) in an ecologically acceptable way using gum Arabic (GA) polymer as a capping and reducing agent. Bimetallic Ag-CuO NPs were investigated through UV-Vis. spectroscopy, HR-TEM, SEM, DLS, and XRD examinations. The potency of antimicrobial and antibiofilm activities against a few bacterial isolates and Candida sp. had been investigated. Clinical investigations of 30 cows and 20 buffaloes from different sites in Egypt's Sharkia governorate found ulcerative lesions on the mouth and interdigital region. The cytotoxic assay of the generated NPs on BHK-21 was examined. The bimetallic Ag-CuO NPs had an average diameter of 25.58 nm, and the HR-TEM results showed that they were spherical. According to our results, Ag-CuO NPs exhibited the highest antibacterial efficacy against S. aureus (26.5 mm ZOI), K. pneumoniae (26.0 mm ZOI), and C. albicans (28.5 mm ZOI). The growth of biofilms was also successfully inhibited through the application of Ag-CuO NPs by 88.12 % against S. aureus, 87.08 % against C. albicans, and 74.0 % against B. subtilis. The ulcers on the mouth and foot of diseased animals healed in 4-5 days and 1 week, respectively, following topical application of bimetallic Ag-CuO NPs. The results examined the potential protective effects of a dosage of 3.57 µg/mL on cells before viral infection (cell control). According to our research, bimetallic Ag-CuO NPs limit the development of the virus that causes foot-and-mouth disease (FMD). The reduction of a specific FMD virus's cytopathic impact (CPE) on cell development represented the inhibitory effect when compared to identical circumstances without pretreatment with bimetallic Ag-CuO NPs. Their remarkable antibacterial properties at low concentration and continued-phase stability suggest that they may find widespread use in a variety of pharmacological and biological applications, especially in the wound-healing process.


Subject(s)
Anti-Infective Agents , Foot-and-Mouth Disease , Metal Nanoparticles , Nanoparticles , Female , Animals , Cattle , Silver/chemistry , Copper/chemistry , Gum Arabic/pharmacology , Staphylococcus aureus , Biomass , Anti-Bacterial Agents/chemistry , Bacteria , Anti-Infective Agents/pharmacology , Nanoparticles/chemistry , Oxides/pharmacology , Metal Nanoparticles/chemistry
3.
World J Microbiol Biotechnol ; 39(12): 324, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773301

ABSTRACT

Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.


Subject(s)
Curcumin , Helicobacter Infections , Helicobacter pylori , Animals , Mice , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Helicobacter Infections/drug therapy , Curcumin/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
4.
Res Microbiol ; 174(7): 104084, 2023.
Article in English | MEDLINE | ID: mdl-37247797

ABSTRACT

The high incidence of persistent multidrug resistant bacterial infections is a worldwide public health burden. Alternative strategies are required to deal with such issue including the use of drugs with anti-virulence activity. The application of nanotechnology to develop advanced Nano-materials that target quorum sensing regulated virulence factors is an attractive approach. Synthesis of ascorbic acid Nano-emulsion (ASC-NEs) and assessment of its activity in vitro against the virulence factors and its protective ability against pathogenesis as well as the effect against expression of quorum sensing genes of Pseudomonas aeruginosa and Staphylococcus aureus isolates. Ascorbic acid Nano-emulsion was characterized by DLS Zetasizer Technique, Zeta potential; Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The antibacterial activity of ASC-NEs was tested by the broth microdilution method and the activity of their sub-MIC against the expression of quorum sensing controlled virulence was investigated using phenotypic experiments and RT-PCR. The protective activity of ASC-NEs against P. aeruginosa as well as S. aureus pathogenesis was tested in vivo. Phenotypically, ASC-NEs had strong virulence inhibitory activity against the tested bacteria. The RT-PCR experiment showed that it exhibited significant QS inhibitory activity. The in vivo results showed that ASC-NEs protected against staphylococcal infection, however, it failed to protect mice against Pseudomonal infection. These results suggest the promising use of nanoformulations against virulence factors in multidrug resistant P. aeruginosa and S. aureus. However, further studies are required concerning the potential toxicity, clearance and phamacokinetics of the nanoformulations.

5.
World J Microbiol Biotechnol ; 38(7): 119, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35644864

ABSTRACT

Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors' expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.


Subject(s)
Metal Nanoparticles , Metformin , Animals , Emulsions , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mice , Pseudomonas aeruginosa , Silver/pharmacology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
6.
AMB Express ; 12(1): 84, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35771288

ABSTRACT

Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system.

7.
Biometals ; 34(4): 815-829, 2021 08.
Article in English | MEDLINE | ID: mdl-33895912

ABSTRACT

Aqueous glutathione selenium nano-incorporation (GSH-SeN-Inco) was prepared by gamma radiation in presence of microbial glutathione (GSH) and selenium dioxide. The novel prepared GSH-SeN-Inco are validated by UV-vis spectroscopy, TEM (17.5 nm), DLS, XRD, EDX and FTIR spectrum reveals the presence of GSH moiety that coating the selenium nanoparticles (SeNPs) forming GSH-SeN-Inco. The XRD analysis verified the presence of metallic SeNPs. The nucleation and radiolysis mechanism of GSH-SeN-Inco formation are also discussed. The size GSH-SeN-Inco (17.5 nm) is affected by certain factors such as concentration of GSH, selenium dioxide, and absorbed dose of gamma radiation. The present study explored the positive role of GSH-SeN-Inco as an antitumor activity against HepG-2 and MCF-7, with IC50 at a concentration of 1.00 and 0.9 mM, respectively. The GSH-SeN-Inco show significant scavenging activity at 33%. The GSH-SeN-Inco shows antimicrobial potential against Gram-negative and Gram-positive bacteria with significant MIC especially Escherichia coli ATCC 25922 at 5.20 µg/ml.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Glutathione/pharmacology , Nanoparticles/chemistry , Selenium/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Glutathione/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Particle Size , Picrates/antagonists & inhibitors , Selenium/chemistry
8.
Biol Trace Elem Res ; 196(1): 297-317, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31529241

ABSTRACT

The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol-gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m2/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm3/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.


Subject(s)
Antioxidants/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Nanoparticles/chemistry , Urinary Tract Infections/drug therapy , Zinc Oxide/pharmacology , Animals , Anisotropy , Antioxidants/chemistry , Antioxidants/economics , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/economics , Carcinoma, Ehrlich Tumor/economics , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cost-Benefit Analysis , Humans , Nanoparticles/economics , Particle Size , Picrates/antagonists & inhibitors , Picrates/economics , Surface Properties , Urinary Tract Infections/economics , Zinc Oxide/chemistry , Zinc Oxide/economics
9.
Int J Biol Macromol ; 156: 1584-1599, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-31790741

ABSTRACT

The novelty of the present work looks in the synthesis of aqueous dispersed selenium nanoparticles (Se NPs) using gamma rays with the aid of various natural macromolecules such as citrus pectin (CP), sodium alginate (Alg), chitosan (CS) and aqueous extract of fermented fenugreek powder (AEFFP) using Pleurotus ostreatus for investigating their impact in vitro toward carcinoma cell. The synthesized Se NPs were characterized by XRD, UV-Vis., DLS, HRTEM, SEM, EDX and FTIR. Nucleation and growth mechanisms were also discussed. The factorial design was applied to examine the importance of multiple parameters on Se NPs production with a special focus on temperature and gamma rays influences. FTIR spectrum exhibited the existence of several functional groups in Se NPs-capping macromolecules. Results revealed that Se NPs' size was dramatically-influenced by the type of stabilizer, precursors concentration, pH and the absorbed gamma rays dose. The current research reported the promising antitumor application of Se NPs against Ehrlich Ascites Carcinoma (EAC) and human Colon Adenocarcinoma (CACO) in vitro. The proliferation of EAC was significantly-hindered by Se NPs-CS (38.0 µg/ml) at 60 kGy (IC50 = 23.12%) and Se NPs-AEFFP (19.00 µg/ml) at 15 kGy (IC50 = 7.21%). Also, Se NPs control the generation of CACO cells, IC50 was recorded as 25.32% for Se NPs-CS (38.0 µg/ml) and 8.57% for Se NPs-AEFFP (19.00 µg/ml).


Subject(s)
Chitosan/chemistry , Gamma Rays , Nanoparticles/chemistry , Pleurotus/metabolism , Selenium/chemistry , Selenium/pharmacology , Trigonella/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Fermentation , Humans
10.
Int J Biol Macromol ; 147: 1328-1342, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31770562

ABSTRACT

Aqueous dispersed cobalt hyaluronic acid nanostructure (CoHANs) was synthesized using cobalt ion (Co+2) as precursor and natural polysaccharide hyaluronic acid (HA) as stabilizing agent and gamma irradiation as reducing agent. The synthesized CoHANs are characterized by UV-Vis. spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT-IR). The morphology and surface appearance of CoHANs has been observed by SEM images. The particles size and shape of CoHANs were estimated by TEM images and was found to be 12.0 nm. XRD analysis of the CoHANs confirmed the formation of crystalline nanoparticles. The nucleation and growth mechanism of CoHANs was also discussed. The size of nanoparticles was found to be influenced by certain parameters such as the choice of stabilizer and cobalt ion concentration and the absorbed dose. The results indicated the CoHANs possesses high activity than cobalt ion and HA. The present study explored the positive role of CoHANs as an antitumor agent on different cell carcinoma in vitro. Excellent bactericidal spatially against pathogenic bacteria and fungicidal activity was shown by the CoHANs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cobalt/chemistry , Gamma Rays , Hyaluronic Acid/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Carcinoma , Cell Line, Tumor , Drug Design , Dynamic Light Scattering , HCT116 Cells , Hep G2 Cells , Humans , Light , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Nanomedicine/methods , Nanostructures , Particle Size , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
11.
Colloids Surf B Biointerfaces ; 180: 411-428, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31085460

ABSTRACT

Biomedical applications of nanomaterials have received considerable attention and interest from many researchers over the past decade due to the key role they can play in enhancing public health. Different types of nanomaterials possess both diagnostic and therapeutic potential owing to their outstanding properties compared to their bulk counterparts. Herein, we present, analyze and provide significant insights and recent advances about the promising biomedical applications of nanoparticles including bioimaging of biological environments and its role as a significant tool for early detection of many diseases with respect to traditional means, explaining their types and limitations. In addition, different types of nanoparticles acting as effective bio-sensors and detectors of our body have been analyzed. Moreover, the therapeutic potential of different types of nanoparticles and their attractive antimicrobial effects allowing them to act as powerful and new drug substitutes against multi-drug resistant bacteria and pathogenic fungi. Finally, we introduce some nanoparticles as powerful antioxidants and promising candidates in cancer therapeutics. We conclude that this review can give up-to-date information about various biomedical applications of nanoparticles and will be of great value and interest to researchers and scientists of materials science, biology, chemistry, and medicine.


Subject(s)
Biomedical Technology/methods , Nanostructures/therapeutic use , Theranostic Nanomedicine , Biofilms , Biosensing Techniques , Diagnostic Imaging , Humans
12.
Microb Pathog ; 122: 108-116, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29894810

ABSTRACT

Biosynthesis of nanoparticles by fermented plants using microbes is an eco-friendly and cost-effective process. In this study, we used the fungus Aspergillus orayzae for the fermentation process. The aqueous extract of fermented Lupin (AEFL) possesses the ability to reduce selenium ion in the presence of gamma rays evidenced by the color changes to red. Elemental composition, surface morphology, size determenation, and identity of selenium nanoparticles (SeNPs) were verified by UV-Vis., TEM, DLS, XRD, EDX, SEM and FT-IR. Antimicrobial activity of SeNPs was tested towards multidrug-resistant (MDR) bacteria, and some pathogenic fungi. TEM with DLS analysis confirmed the formation of sphere isotropic, poly-dispersed SeNPs with average particle size 55.0 nm. The nucleation and mechanism of SeNPs production was discussed. Our results revealed that, gamma ray (30.0 kGy) was played a significant role in SeNPs synthesis. The synthesized SeNPs were active towards Acinetobacter calcoaceticus (15.0 mm ZOI) and Staphylococcus aurus (16.6 mm ZOI). Additionally, SeNPs were inhibiting Candida albicans (15.3 mm ZOI) and mycotoxin producing Aspergillus flavus (29.6 mm ZOI). Depending on the unique characteristics, and the novelty in biosynthesis process of SeNPs, it must be candidates in biomedicine, prevent food spoilage, cosmetics, and pharmaceutics as green antimicrobial agent.


Subject(s)
Anti-Infective Agents/metabolism , Aspergillus oryzae/metabolism , Gamma Rays , Lupinus/metabolism , Nanoparticles/metabolism , Selenium/metabolism , Anti-Infective Agents/chemistry , Bacteria/drug effects , Fermentation , Fungi/drug effects , Microbial Sensitivity Tests , Microscopy, Electron , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectrum Analysis , X-Ray Diffraction
13.
Microb Pathog ; 118: 159-169, 2018 May.
Article in English | MEDLINE | ID: mdl-29530808

ABSTRACT

Mono-dispersed copper nanoparticles (CuNPs) were constructed using cheap polysaccharides (citrus pectin, chitosan, and sodium alginate), and by appropriating aqueous fermented fenugreek powder (FFP) under the action of Pleurotus ostreatus (as reducing and preserving means), through the influence of gamma irradiation. The synthesized CuNPs are described by UV-Vis. spectroscopy TEM, DLS, XRD, and FT-IR. XRD study of the CuNPs confirmed the generation of metallic CuNPs. The nucleation and the production mechanism of CuNPs are moreover explained. TEM unveiled that, the ordinary diameter of CuNPs incorporated by various polysaccharides, and FFP taken in the range of 31.0 and 36.0 nm respectively. CuNPs size is influenced by many parameters such as the variety of stabilizer, pH within the organization and applied gamma dose. Evaluation of the antioxidant and antimicrobial activities of CuNPs was performed against some selected wound pathogens. The results showed that, CuNPs were a strong antimicrobial agents against microbes caused burn skin infection such as Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans (16.0, 15.0, and 15.0 mm ZOI, respectively). Additionally, CuNPs have a strong antioxidant with 70% scavenging activity against DPPH. So, due to unique characteristics of CuNPs (cost-effective with continued-term stabilization and effective features), they can recover reasonable potential in biomedical, industrial, agricultural, cosmetics, dermal products and pharmaceutical purposes.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Copper/chemistry , Fermentation , Gamma Rays , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Pleurotus/metabolism , Polysaccharides/chemistry , Trigonella/chemistry , Alginates , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/radiation effects , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Antioxidants/radiation effects , Candida albicans/drug effects , Chitosan/chemistry , Citrus , Copper/radiation effects , Free Radical Scavengers , Glucuronic Acid , Hexuronic Acids , Hydrogen-Ion Concentration , Klebsiella pneumoniae/drug effects , Metal Nanoparticles/radiation effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Particle Size , Pectins/chemistry , Plant Extracts/metabolism , Polysaccharides/chemical synthesis , Polysaccharides/radiation effects , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Trigonella/microbiology , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...