Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 11(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34944204

ABSTRACT

The objective of this study was to compare the total tract (total excreta and marker) and prececal methodologies to determine phosphorus (P) digestibility and to evaluate its variation as a function of the physicochemical characteristics of the inorganic phosphate used (monocalcium, MCP and dicalcium, DCP) from different commercial sources. A total of 176 1-day-old male broilers were used in two digestibility experiments. In Experiment 1, one MCP and one DCP were incorporated in the basal diet at two levels. In Experiment 2, MCP and DCP from three commercial sources were incorporated to the basal diet at one level. Physicochemical characteristics of inorganic phosphates were examined, as well. Additionally, bone mineralization and growth performance traits were investigated in both trials. The digestibility of MCP ranged from 75.2 to 87.4% and from 80.5 to 86.6% for DCP amongst methodologies, but differences between total tract and preceal methodologies were not statistically significant. Particle size, surface area, degree of crystallinity and impurities varied amongst commercial sources. The P digestibility of the three tested commercial sources of MCP was 79.6% (MCP1), 70.2% (MCP2) and 65.6% (MCP3); p > 0.05. The P digestibility of the 3 tested commercial sources of DCP was 80.1% (DCP1), 77.4% (DCP2) and 71.4% (DCP3); p > 0.05.

2.
Environ Technol ; 41(8): 997-1006, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30149787

ABSTRACT

Wheat straw and animal wastes are important feedstock for biogas production in Europe. Yet, the high content of lignocellulosic and refractory materials causes the process to be relatively slow. Therefore, pretreatment methods have been proposed to shorten the hydrolysis phase. The present study examined the effectiveness of alkali pre-treatment (AP), ultrasonic pre-treatment (UP), and alkali-ultrasonic pre-treatment (AUP) applied on wheat straw (WS), solid fraction of cattle manure (SCM) and solid fraction of slaughterhouse waste (SSHW), by monitoring solubilisation ratio, anaerobic biodegradability and methane yield. The results indicate that the solubilisation ratio of the substrates improved regardless of the types of pre-treatment applied. Though, AP was more effective on WS and SSHW than other pre-treatments (UP and AUP), with approximately 47% and 17% extra methane, respectively. Moreover, AP of SCM caused an increased in methane production rate by 100% and minimised lag phase from 16 days to 1 day during anaerobic digestion. Based on Danish conditions, only AP of WS was economical prior to the biogas process due to high extra methane yield. A positive energy budget of 8 € t-1 VS was calculated. High-energy consumption during UP and AUP in laboratory scale hindered the positive benefits of these pre-treatments.


Subject(s)
Manure , Triticum , Abattoirs , Alkalies , Anaerobiosis , Animals , Biofuels , Cattle , Europe , Methane , Ultrasonics
3.
Environ Technol ; 40(20): 2633-2642, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29498588

ABSTRACT

In this work the methane conversion factor (MCF) of untreated and anaerobically digested cattle manure (CM) as a function of storage temperature, time and co-digestion was measured in an in vitro experiment and modelled based on IPCC (2006) methodology (Tier 2). For this, one sample of untreated CM, one sample of mono-digested CM and three samples of CM co-digested with grass were incubated at seven different temperatures (from 5°C to 50°C) over 346 days. The main results showed that ultimate methane yield (B0) of CM is higher than the B0 reported by the IPCC (2006). Two temperature ranges should be considered for MCF evolution, below 15°C very low MCF was measured in this work for untreated CM, mono and co-digested samples. At higher temperatures, MCF obtained in this work and that provided by the IPCC could be comparable depending on storage time. Anaerobic mono-digestion decreased MCF compared to untreated CM at all temperatures and times, except in the temperature range between 20°C and 25°C if storage time is low, due to a lag phase observed in CM. This lag phase would probably not happen in real storage conditions depending on the proportion of old manure remaining in the storage tank. Co-digestion with grass-decreased MCF compared to mono-digestion, but increased CH4 production in terms of fresh matter due to the higher B0 of the mixture. Storage time, temperature and co-digestion should be considered in the quantification of CH4 emission from digested material.


Subject(s)
Manure , Methane , Anaerobiosis , Animals , Cattle , Hot Temperature , Temperature
4.
J Environ Manage ; 225: 272-279, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30098493

ABSTRACT

This study investigated the temperature dependency of CH4 emission from pre-storage of animal manure prior to anaerobic digestion at 15, 20, 25 and 30 °C using lab-scale anaerobic digesters. The manure was added and removed daily to simulate the pre-storage process at biogas plants. CH4 emission accounted for 1-46% of total CH4 potential from pig manure (PM) and 1-2% of that from cattle manure (CM) at the investigated temperatures, with significant increases above 25 °C. Addition of food waste (FW) reduced the CH4 emission when storage temperature was 20 °C or lower for PM and 25 °C or lower for CM due to volatile fatty acid accumulation and lower pH (<5.5) but emissions increased with higher storage temperatures.


Subject(s)
Bioreactors , Manure , Methane/analysis , Anaerobiosis , Animals , Biofuels , Cattle , Swine , Temperature
5.
Bioresour Technol ; 239: 258-265, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28531850

ABSTRACT

Alkaline pretreatment of lignocellulosic biomass has been intensively investigated but heavy water usage and environmental pollution from wastewater limits its industrial application. This study presents a pretreatment technique by in-situ injection of potassium hydroxide concentrations ranging from 0.8% to 10% (w/w) into the briquetting process of wheat straw and meadow grass. Results show that the biomethane yield and hydrolysis rate was improved significantly with a higher impact on wheat straw compared to meadow grass. The highest biomethane yield from wheat straw briquettes of 353mL.g-1 VS was obtained with 6.27% (w/w) potassium hydroxide injection, which was 14% higher than from untreated wheat straw. The hydrolysis rates of wheat straw and meadow grass increased from 4.27×10-2 to 5.32×10-2d-1 and 4.19×10-2 to 6.00×10-2d-1, respectively. The low water usage and no wastewater production make this a promising technology.


Subject(s)
Hydroxides , Methane , Potassium Compounds , Triticum , Biofuels , Grassland , Hydrolysis
6.
Bioresour Technol ; 232: 313-320, 2017 May.
Article in English | MEDLINE | ID: mdl-28242388

ABSTRACT

The evolution and population dynamics of complex anaerobic microbial communities in anaerobic digesters were investigated during stable operation and recovery after prolonged starvation. Three thermophilic reactor systems fed with cattle manure were operated continuously in parallel for 167days. Significant changes in the microbial communities were observed for both the bacterial and archaeal populations as the reactor systems were subjected to changing feeding regimes. The ecosystems developed from being relatively similar in structure to more specialised communities, with large population shifts within the acetogenic and methanogenic communities, which appeared to shift towards the hydrogenotrophic methanogenesis pathway. All reactor systems showed signs of adaptation to a harsher environment under high VFA, H2S and ammonia concentrations, but remained at a lower degree of stability after 45days of recovery compared to stable period of operation before starvation.


Subject(s)
Bioreactors/microbiology , Biota/physiology , Food , Manure/microbiology , Anaerobiosis , Animals , Archaea/metabolism , Cattle , Cell Survival , Euryarchaeota/metabolism , Methane/metabolism , Microbial Viability , Population Dynamics
7.
J Environ Manage ; 173: 127-33, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26985731

ABSTRACT

Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology.


Subject(s)
Manure , Sulfates/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Animals , Bioreactors , Cattle , Fatty Acids, Volatile/analysis , Hot Temperature , Methane/analysis
8.
Microb Biotechnol ; 8(5): 787-800, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25737010

ABSTRACT

In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.


Subject(s)
Archaea/classification , Bacteria/classification , Bioreactors/microbiology , Biota , Manure/microbiology , Methane/metabolism , Anaerobiosis , Animals , Archaea/genetics , Archaea/growth & development , Archaea/metabolism , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Cattle , Hydrogen-Ion Concentration , Molecular Sequence Data , Sequence Analysis, DNA , Temperature
9.
Ann Agric Environ Med ; 21(1): 15-24, 2014.
Article in English | MEDLINE | ID: mdl-24742034

ABSTRACT

Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.


Subject(s)
Chickens , Environmental Monitoring/methods , Salmonella Infections, Animal/epidemiology , Salmonella/isolation & purification , Animals , Colony Count, Microbial , Environmental Monitoring/instrumentation , Housing, Animal , Male , Pilot Projects , Polymerase Chain Reaction , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Spain/epidemiology
10.
Waste Manag ; 34(1): 196-203, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24238994

ABSTRACT

Anaerobic co-digestion of pig slurry with four agricultural substrates (tomato, pepper, persimmon and peach) was investigated. Each agricultural substrate was tested in co-digestion with pig slurry at four inclusion levels: 0%, 15%, 30% and 50%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the pig slurry with the VS from the agricultural substrate. The effect of substrate type and inclusion level on the biochemical methane potential (BMP) was evaluated in a batch assay performed at 35 °C for 100 days. Agricultural substrate's chemical composition was also analyzed and related with BMP. Additionally, Bacteria and Archaea domains together with the four main methanogenic archaeal orders were quantified using quantitative real-time TaqMan polymerase chain reaction (qPCR) at the end of the experiment to determine the influence of agricultural substrate on sludge's microbial composition. Results showed that vegetable substrates (pepper and tomato) had higher lipid and protein content and lower carbohydrates than fruit substrates (persimmon and peach). Among substrates, vegetable substrates showed higher BMP than fruit substrates. Higher BMP values were obtained with increasing addition of agricultural substrate. The replacement of 50% of VS from pig slurry by tomato and pepper increased BMP in 41% and 44%, respectively compared with pig slurry only. Lower increments in BMP were achieved with lower inclusion levels. Results from qPCR showed that total bacteria and total archaea gene concentrations were similar in all combinations tested. Methanomicrobiales gene concentrations dominated over the rest of individual archaeal orders.


Subject(s)
Biofuels , Manure , Methane/biosynthesis , Waste Disposal, Fluid/methods , Agriculture , Anaerobiosis , Animals , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Manure/microbiology , Methanomicrobiales/genetics , Methanomicrobiales/metabolism , RNA, Ribosomal, 16S , Swine , Vegetables/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...