Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
ACS Biomater Sci Eng ; 10(3): 1686-1696, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38347681

ABSTRACT

One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.


Subject(s)
Microfluidics , Vascular Endothelial Growth Factor A , Humans , Delayed-Action Preparations/chemistry , Vascular Endothelial Growth Factor A/genetics , Tissue Engineering , Polymers
2.
Regen Biomater ; 11: rbad100, 2024.
Article in English | MEDLINE | ID: mdl-38223292

ABSTRACT

Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity and low immunogenicity. They can respond to multiple extracellular matrix signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation toward functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.

3.
J Esthet Restor Dent ; 36(3): 503-510, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994681

ABSTRACT

OBJECTIVE: Measure and compare the mechanical properties, translucency, and fluoride-releasing capabilities of EQUIA Forte HT against Fuji IX GP and ChemFil Rock. MATERIALS AND METHODS: Ten specimens of each material were fabricated for compressive strength (CS), flexural strength (FS), and surface hardness analysis at 24 h and 7 days. The L*a*b* values were measured against a black-and-white background using a spectrophotometer to analyze the translucency parameter (TP). Fluoride release was recorded after 2 months of immersion in distilled water. The mean data was analyzed by 1- and 2-way ANOVA (α = 0.5). RESULTS: EQUIA Forte HT showed higher CS, surface hardness, and FS values (p < 0.05) compared with Fuji IX GIC, while no significant difference was found in FS values between EQUIA Forte HT and Chemfil Rock (p > 0.05). The EQUIA Forte HT exhibited significantly higher translucency in comparison to both ChemFil Rock (p < 0.001) and Fuji IX GICs (p < 0.05). An increase (p > 0.05) of fluoride release was observed for EQUIA Forte HT. CONCLUSION: The EQUIA Forte HT Glass-ionomer cements (GIC) offers enhanced translucency, improved strength, and enhanced fluoride-releasing properties compared to the traditionally used Fuji IX GIC and ChemFil Rock GICs. This material might have a wide range of clinical applications due to its improved strength and optical properties. CLINICAL SIGNIFICANCE: Glass-ionomer dental restorative materials possess unique advantageous characteristics. However, its poor mechanical and optical properties have typically limited its clinical applications. Efforts to improve these properties have resulted in enhanced GICs. EQUIA Forte HT GIC offers enhanced mechanical and optical properties with potential applications in posterior and anterior restorative procedures.


Subject(s)
Aluminum Silicates , Dental Materials , Fluorides , Glass Ionomer Cements , Compressive Strength , Hardness , Materials Testing
4.
ACS Mater Au ; 3(5): 540-547, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089089

ABSTRACT

The use of poly(ε-caprolactone) (PCL) for biomedical applications is well established, particularly for permanent implants, due to its slow degradation rate, suitable mechanical properties, and biocompatibility. However, the slow degradation rate of PCL limits its application for short-term and temporary biomedical applications where bioabsorbability is required. To enhance the properties of PCL and to expand its biomedical applications, we developed an approach to produce PCL membranes with tunable degradation rates, mechanical properties, and biofunctional features. Specifically, we utilized electrospinning to create fibrous PCL membranes, which were then chemically modified using potassium permanganate to alter their degradability while having minimal impact on their fibrous morphology. The effects of the chemical treatments were investigated by treating the samples for different time periods ranging from 6 to 48 h. After the 48 h treatment, the membrane degraded by losing 25% of its mass over 12 weeks in degradation studies, while maintaining its mechanical strength and exhibiting superior biofunctional features. Our results suggest that this approach for developing PCL with tailored properties could have significant potential for a range of biomedical applications.

5.
Cells ; 12(7)2023 03 24.
Article in English | MEDLINE | ID: mdl-37048071

ABSTRACT

Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Cellular Senescence/genetics , Rejuvenation , Oxidative Stress
6.
J Evid Based Dent Pract ; 22(4): 101797, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36494104

ABSTRACT

ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION: Wei SM, Zhu Y, Wei JX, Zhang CN, Shi JY, Lai HC. Accuracy of dynamic navigation in implant surgery: A systematic review and meta-analysis. Clin Oral Implants Res. 2021 Apr;32(4):383-393. doi: 10.1111/clr.13719. SOURCE OF FUNDING: Shanghai Jiao Tong University School of Medicine (grant no. DLY201822); Shanghai Clinical Research Center for Oral Diseases (grant no. 19,411,950,100); Clinical Research Plan of SHDC (grant no. 16CR3033A). TYPE OF STUDY/DESIGN: Systematic review with meta-analysis.


Subject(s)
Dental Implants , Surgery, Computer-Assisted , Humans , China , Dental Implantation, Endosseous
7.
Matter ; 5(2): 666-682, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35340559

ABSTRACT

Periodontal diseases are caused by microbial infection and the recruitment of destructive immune cells. Current therapies mainly deal with bacteria elimination, but the regeneration of periodontal tissues remains a challenge. Here we developed a modular microneedle (MN) patch that delivered both antibiotic and cytokines into the local gingival tissue to achieve immunomodulation and tissue regeneration. This MN patch included a quickly dissolvable gelatin membrane for an immediate release of tetracycline and biodegradable GelMA MNs that contained tetracycline-loaded poly(lactic-co-glycolic acid) nanoparticles and cytokine-loaded silica microparticles for a sustained release. Antibiotic release completely inhibited bacteria growth, and the release of IL-4 and TGF-ß induced the repolarization of anti-inflammatory macrophages and the formation of regulatory T cells in vitro. In vivo delivery of MN patch into periodontal tissues suppressed proinflammatory factors and promoted pro-regenerative signals and tissue healing, which demonstrated the therapeutic potential of local immunomodulation for tissue regeneration.

8.
Adv Healthc Mater ; 11(12): e2102593, 2022 06.
Article in English | MEDLINE | ID: mdl-35191610

ABSTRACT

Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Periodontal Diseases , Animals , Periodontal Diseases/therapy , Periodontium , Rats , Stem Cells
9.
Int J Oral Sci ; 13(1): 22, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193832

ABSTRACT

Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Biocompatible Materials , Cell Differentiation , Humans , Tissue Engineering
10.
ACS Appl Mater Interfaces ; 13(30): 35342-35355, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34297530

ABSTRACT

Growth-factor-free bone regeneration remains a challenge in craniofacial engineering. Here, we engineered an osteogenic niche composed of a commercially modified alginate hydrogel and whitlockite microparticles (WHMPs), which impart tunable physicochemical properties that can direct osteogenesis of human gingival mesenchymal stem cells (GMSCs). Our in vitro studies demonstrate that WHMPs induce osteogenesis of GMSCs more effectively than previously demonstrated hydroxyapatite microparticles (HApMPs). Alginate-WHMP hydrogels showed higher elasticity without any adverse effects on the viability of the encapsulated GMSCs. Moreover, the alginate-WHMP hydrogels upregulate the mitogen-activated protein kinase (MAPK) pathway, which in turn orchestrates several osteogenic markers, such as RUNX2 and OCN, in the encapsulated GMSCs. Concurrent coculture studies with human osteoclasts demonstrate that GMSCs encapsulated in alginate-WHMP hydrogels downregulate osteoclastic activity, potentially due to release of Mg2+ ions from the WHMPs along with secretion of osteoprotegerin from the GMSCs. In vivo studies demonstrated that the GMSCs encapsulated in our osteogenic niche were able to promote bone repair in calvarial defects in murine models. Altogether, our results confirmed the development of a promising treatment modality for craniofacial bone regeneration based on an injectable growth-factor-free hydrogel delivery system.


Subject(s)
Bone Regeneration/drug effects , Calcium Phosphates/therapeutic use , Hydrogels/therapeutic use , Skull/drug effects , Alginates/therapeutic use , Animals , Cell Differentiation/drug effects , Cells, Immobilized , Gingiva/cytology , Humans , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley , Tissue Engineering/methods
11.
Stem Cells Int ; 2021: 9952401, 2021.
Article in English | MEDLINE | ID: mdl-34239574

ABSTRACT

OBJECTIVE: To compare two pulp harvesting methods for stem cell expansion, namely, conservative pulpotomy and pulpectomy from exodontia. METHOD: Ten freshly extracted sound third molars from five patients were selected. Five were used in the control group, where pulp harvesting was performed by exodontia and the remaining teeth were used in the test group, where the pulp was harvested by conservative pulpotomy (preserving the tooth). This was a split-mouth design study, where a third molar from one side was randomly allocated into the test group and the contralateral tooth in the control group. After pulp harvesting, the following evaluations were performed: cell morphology, sterility test, immunophenotyping, differentiation assays, first pass live cell counts, time to cryopreservation, and total number of expanded cells at the end of the fourth pass. RESULTS: Regarding morphology, the cells from both groups presented a fibroblastic phenotype. All samples were sterile. Immunophenotyping demonstrated a positive expression for CD105, CD90, and CD73 and negative expression for CD45 in both groups. Differentiation assays were positive for osteogenic and chondrogenic differentiation in both groups. Regarding live cell counts in the first passage, the control group had 95.8% live cells in the total count and the test group 91.2% (p < 0.05). The time required for cryopreservation was equivalent in both groups 51.6 days and 52.6 days, respectively (p > 0.05). The total number of cells at the end of the fourth passage was 5,286,782 and 5,736,862, respectively (p > 0.05). CONCLUSION: These results suggest that adult stem cell harvesting from conservative pulpotomy is as effective as the traditional exodontia-based method.

12.
ACS Biomater Sci Eng ; 7(8): 3774-3782, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34082525

ABSTRACT

Soft tissue reconstruction has remained a major clinical challenge in dentistry and regenerative medicine. Although current methods have shown partial success, there are several disadvantages associated with these approaches. Gingival mesenchymal stem cells (GMSCs) can be simply obtained in the oral cavity for soft tissue augmentation. Regenerative potential of mesenchymal stem cells (MSCs) encapsulated in hydrogels is well documented. Here, an alginate-gelatin methacrylate (GelMA) hydrogel formulation is developed encapsulating GMSCs within the developed hydrogel. The results confirm that the encapsulated MSCs remain viable within the hydrogel with enhanced collagen deposition. An excisional wound model in mice is utilized to evaluate the in vivo functionality of the GMSC-hydrogel construct for wound healing and soft tissue regeneration. The histology and immunofluorescence analyses confirm the effectiveness of the GMSC-hydrogel in expediting wound healing via enhancing angiogenesis and suppressing local proinflammatory cytokines. Altogether, the findings demonstrate that GMSCs encapsulated in an engineered hydrogel sheet based on alginate and GelMA can be used to expedite wound healing and soft tissue regeneration, with potential applications in plastic and reconstructive surgery as well as dentistry.


Subject(s)
Mesenchymal Stem Cells , Alginates , Animals , Gelatin , Hydrogels , Methacrylates , Mice , Oligopeptides , Wound Healing
13.
J Biomed Mater Res A ; 109(10): 1858-1868, 2021 10.
Article in English | MEDLINE | ID: mdl-33830598

ABSTRACT

In this study, a light cross-linkable biocomposite scaffold based on a photo-cross-linkable poly (propylene fumarate) (PPF)-co-polycaprolactone (PCL) tri-block copolymer was synthesized and characterized. The developed biodegradable scaffold was further modified with ß-tricalcium phosphate (ß-TCP) bioceramic for bone tissue engineering applications. The developed biocomposite was characterized using H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Moreover, the bioceramic particle size distribution and morphology were evaluated using Brunauer-Emmett-Teller method, X-ray diffraction, and scanning electron microscopy. The mechanical properties and biodegradation of the scaffolds were also evaluated. Cytotoxicity and mineralization assays were performed to analyze the biocompatibility and bioactivity capacity of the developed biocomposite. The characterization data confirmed the development of a biodegradable and photo-cross-linkable PCL-based biocomposite reinforced with ß-TCP bioceramic. In vitro analyses demonstrated the biocompatibility and mineralization potential of the synthesized bioceramic. Altogether, the results of the present study suggest that the photo-cross-linkable PCL-PPF-PCL tri-block copolymer reinforced with ß-TCP is a promising biocomposite for bone tissue engineering applications. According to the results, this newly synthesized material has a proper chemical composition for further clinically-relevant studies in tissue engineering.


Subject(s)
Biocompatible Materials/chemical synthesis , Bone Regeneration , Cross-Linking Reagents/chemistry , Light , Polyesters/chemical synthesis , Apatites/chemistry , Biocompatible Materials/chemistry , Body Fluids/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death , Elastic Modulus , Fumarates/chemical synthesis , Fumarates/chemistry , Humans , Materials Testing , Polyesters/chemistry , Polypropylenes/chemical synthesis , Polypropylenes/chemistry , Porosity , Proton Magnetic Resonance Spectroscopy , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared
14.
Int J Oral Maxillofac Implants ; 35(6): 1141-1148, 2020.
Article in English | MEDLINE | ID: mdl-33270054

ABSTRACT

PURPOSE: The purpose of this study was to determine the minimum torque required to attach the transducer to the implant to measure the implant stability quotient (ISQ) with two different devices and to estimate if finger-generated torque would be reliable for this purpose. MATERIALS AND METHODS: One hundred implants were inserted into a uniform polyurethane block. The implants were distributed into 10 groups, with 10 implants each. The transducers were manually attached by a female operator (G female) and by a male operator (G male) using the standard connector provided by the manufacturers. For the remaining groups, the transducers were placed using a connector adapted to a digital torque wrench with different torque settings: 3 Ncm (G 3Ncm), 4 Ncm (G 4Ncm), 5 Ncm (G 5Ncm), 6 Ncm (G 6Ncm), 10 Ncm (G 10Ncm), 13 Ncm (G 13Ncm), 17 Ncm (G 17Ncm), and 20 Ncm (G 20Ncm). The stability was measured for all groups using both the Osstell and the Penguin resonance frequency analyzers. The minimum, medium, and maximum finger grip torque were accessed on 100 volunteers. RESULTS: For Osstell, the conjugated confidence intervals were homogenous for four groups (G 10Ncm, G 13Ncm, G 17Ncm, and G 20Ncm), and for Penguin, they were homogenous for six groups (G 5Ncm, G 6Ncm, G 10Ncm, G 13Ncm, G 17Ncm, and G 20Ncm). The minimum finger-generated force was 2.18 ± 1.05 Ncm, the medium force was 4.25 ± 1.57 Ncm, and the maximum force was 7.51 ± 2.52 Ncm, measuring with a digital torque meter. CONCLUSION: For an accurate measurement of ISQ, the minimum torque necessary to insert the transducer into the implant for Osstell was 10 Ncm, while for Penguin, it was 5 Ncm. Therefore, when using Osstell to assess implant stability, the authors suggest the use of a torque wrench to ensure 10 Ncm of force is applied when tightening the transducer into the implant to obtain accurate stability measurements. When using Penguin, the maximum finger-generated tightening force is enough.


Subject(s)
Dental Implants , Resonance Frequency Analysis , Dental Implantation, Endosseous , Female , Fingers , Humans , Male , Torque , Transducers
15.
Dent Clin North Am ; 64(4): 621-631, 2020 10.
Article in English | MEDLINE | ID: mdl-32888512

ABSTRACT

Material selection is one of the most important decisions to be made by clinicians. Proper material selection can affect the long-term function, longevity, and esthetics of restorations. There are a large number of restorative materials available, which has increased the complexity of the decision-making process. Improper material selection can lead to failures in the outcome. This article is designed to provide the practitioner with up-to-date practical information on ceramic restorative materials and techniques in a clear, evidence-based, and unbiased manner. It also provides decision-making guides to help the practitioner determine the best ceramic material for various clinical scenarios.


Subject(s)
Ceramics , Esthetics, Dental , Dental Materials , Dental Porcelain , Humans
16.
Acta Biomater ; 108: 326-336, 2020 05.
Article in English | MEDLINE | ID: mdl-32160962

ABSTRACT

Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.


Subject(s)
Osteogenesis , Tissue Engineering , Bone Regeneration , Bone and Bones , Humans , Tissue Scaffolds
17.
Sci Transl Med ; 12(534)2020 03 11.
Article in English | MEDLINE | ID: mdl-32161103

ABSTRACT

Cell-laden hydrogels are widely used in tissue engineering and regenerative medicine. However, many of these hydrogels are not optimized for use in the oral environment, where they are exposed to blood and saliva. To address these challenges, we engineered an alginate-based adhesive, photocrosslinkable, and osteoconductive hydrogel biomaterial (AdhHG) with tunable mechanical properties. The engineered hydrogel was used as an injectable mesenchymal stem cell (MSC) delivery vehicle for craniofacial bone tissue engineering applications. Subcutaneous implantation in mice confirmed the biodegradability, biocompatibility, and osteoconductivity of the hydrogel. In a well-established rat peri-implantitis model, application of the adhesive hydrogel encapsulating gingival mesenchymal stem cells (GMSCs) resulted in complete bone regeneration around ailing dental implants with peri-implant bone loss. Together, we have developed a distinct bioinspired adhesive hydrogel with tunable mechanical properties and biodegradability that effectively delivers patient-derived dental-derived MSCs. The hydrogel is photocrosslinkable and, due to the presence of MSC aggregates and hydroxyapatite microparticles, promotes bone regeneration for craniofacial tissue engineering applications.


Subject(s)
Adhesives , Hydrogels , Animals , Bone Regeneration , Bone and Bones , Humans , Mice , Rats , Tissue Engineering
18.
J Biomed Mater Res A ; 108(7): 1459-1466, 2020 05.
Article in English | MEDLINE | ID: mdl-32142198

ABSTRACT

PURPOSE: The present study sought to design a multi-functional fusion peptide with hydroxyapatite (HA) binding domain (HABD) and heparin binding domain (HBD). METHODS: The 74 amino acid fusion peptide contained N-terminus of the fibrinogen ß chain (ß 15-66), double G4S-linker and 12 residues with HA affinity. This construct was designed, synthesized and cloned into pET21a(+) vector and expressed in E. coli. RESULTS: HABD facilitated purification of the fusion peptide by HA affinity chromatography. Kinetic peptide binding and release on HA scaffold showed sustained release of peptide for up to 16 days. Competitive ELISA and intrinsic fluorescence assays were applied to determine HBD affinity to bone morphogenetic protein-2 (BMP-2). The disassociation rate constant (Kd ) for HBD and rhBMP-2 was approximately 9.2-12 nM. CONCLUSION: The fusion peptide developed in the present study, allowed for streamlined purification on HA affinity chromatography, as well as sustained release from HA scaffold, attributed to its HABD. HBD mediated binding to BMP-2, which may be potentially useful for bone repair. Additional studies, including in vivo investigation will be required to assess the efficacy of the fusion peptide in bone tissue engineering.


Subject(s)
Bone Morphogenetic Protein 2/isolation & purification , Durapatite/chemistry , Peptides/chemistry , Transforming Growth Factor beta/isolation & purification , Binding Sites , Bone Morphogenetic Protein 2/administration & dosage , Chromatography, Affinity , Delayed-Action Preparations/chemistry , Fibrinogen/chemistry , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Proteins/administration & dosage , Recombinant Proteins/isolation & purification , Transforming Growth Factor beta/administration & dosage
19.
ACS Biomater Sci Eng ; 6(4): 2263-2273, 2020 04 13.
Article in English | MEDLINE | ID: mdl-33455314

ABSTRACT

Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.


Subject(s)
Cell Differentiation , Gingiva , Mesenchymal Stem Cells , Alginates , Animals , Humans , Hydrogels , Regeneration , Tissue Scaffolds
20.
J Biomed Mater Res A ; 108(3): 557-564, 2020 03.
Article in English | MEDLINE | ID: mdl-31709717

ABSTRACT

Osteoconductive hydrogels can be fabricated by incorporating necessary growth factors and bioactive particles or simply utilizing the ability of the hydrogel itself to induce bone regeneration. The osteogenic inductive potential of the bioactive glass microparticles (BG MPs) has been well-studied. However, the role of the hydrogel embedding the BG MPs on the osteogenic differentiation of the encapsulated stem cells has not been well established. Moreover, it has been reported that the dental pulp stem cell (DPSC) has the capability of regenerating the craniofacial bone tissue when receiving the necessary osteogenic signals from the microenvironment. In the current study, we have fabricated a composite hydrogel based on alginate and Matrigel containing BG MPs and evaluated the role of the BG MPs and Matrigel on osteogenic differentiation of the encapsulated DPSCs. Our results confirmed that presence of Matrigel enhances the osteogenic differentiation of the DPSCs regardless of the decrease in elasticity of the hydrogel in presence of the BG MPs. This strategy of modifying the microenvironment can be a promising approach for craniofacial bone tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Dental Pulp/cytology , Osteogenesis , Stem Cells/cytology , Cell Differentiation , Cells, Cultured , Humans , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...