Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Sci ; 332: 111722, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120035

ABSTRACT

The review is focused on a comparative analysis of the literature data on the ultrastructural reorganization of leaf cells of higher plants, which differ in their response to low sub-damaging temperatures. The importance of adaptive structural reorganization of cells as a special feature contributing to the surviving strategy of plants existing under changed conditions is emphasized. The adaptive strategy of cold-tolerant plants combines the structural, functional, metabolic, physiological and biochemical reorganization of cells and tissues. These changes constitute a unified program directed to protecting against dehydration and oxidative stress, as well as maintaining basic physiological processes, and above all, photosynthesis. The ultrastructural markers of cold-tolerant plants adaptation to low sub-damaging temperatures include some particular changes in cell morphology. Namely: the following: an increase in the volume of the cytoplasm; the formation of new membrane elements in it; an increase in the size and number of chloroplasts and mitochondria; concentration of mitochondria and peroxisomes near chloroplasts; polymorphism of mitochondria; an increase in the number of cristae in them; the appearance of outgrowths and invaginations in chloroplasts; lumen expansion in the thylakoids; the formation in chloroplasts "sun type" membrane system with reduction in the number and size of grana and domination of non-appressed thylakoids membranes. Due to this adaptive structural reorganization cold-tolerant plants are able to function actively during chilling. On the contrary, structural reorganization of leaf cells of cold-sensitive plants under chilling is aimed at maintaining the basic functions at a minimum level. Cold-sensitive plants "wait out" low temperature stress, and with prolonged exposure to cold, they die from dehydration and intensification of oxidative stress.


Subject(s)
Dehydration , Plant Cells , Dehydration/metabolism , Chloroplasts/metabolism , Photosynthesis/physiology , Thylakoids/metabolism , Cold Temperature , Plants
2.
Plant Physiol Biochem ; 190: 145-155, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36115268

ABSTRACT

Nanotechnologies provide a great platform for researching nanoparticles effects on living organisms including plants. This work shows the stimulating effect of seed priming with gold nanoparticles (AuNPs) on photosynthetic apparatus of Triticum aestivum seedlings. It was found using inductively coupled plasma-atomic emission and mass spectrometry that AuNPs (the average diameter of 15.3 nm, concentration of 20 µg ml-1) penetrated into the seeds, but were not found in seedling leaves. Ultrastructural changes in chloroplasts were found using transmission electron microscopy in plants grown from treated seeds: increases in the size of plastids, starch grains, grana in chloroplasts, and the number of thylakoids in grana. The intensity of photosynthesis, the content of chlorophylls, and the portion of unsaturated fatty acids in the composition of total leaf lipids were increased in treated AuNPs plants. This study demonstrates that revealed changes determined the increased tolerance of wheat to low temperature. The adaptive significance of these changes, possible mechanisms of the AuNPs effects on plants and future perspectives of study are discussed. This is the first report showing nanopriming with AuNPs as a new method to study the mechanisms of stress tolerance.


Subject(s)
Metal Nanoparticles , Triticum , Chloroplasts/metabolism , Gold/chemistry , Lipids , Metal Nanoparticles/chemistry , Photosynthesis , Seedlings , Starch/metabolism , Triticum/ultrastructure
3.
Environ Sci Pollut Res Int ; 29(36): 55235-55249, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35316488

ABSTRACT

The intensive development of nanotechnology led to the widespread application of various nanoparticles and nanomaterials. As a result, nanoparticles enter the environment and accumulate in ecosystems and living organisms. The consequences of possible impact of nanoparticles on living organisms are not obvious. Experimental data indicate that nanoparticles have both toxic and stimulating effects on organisms. In this study, we demonstrated for the first time that gold nanoparticles can act as adaptogens increasing plant freezing tolerance. Priming winter wheat (Triticum aestivum L., var. Moskovskaya 39, Poaceae) seeds for 1 day in solutions of gold nanoparticles (15-nm diameter, concentrations of 5, 10, 20, and 50 µg/ml) led to an increase in freezing tolerance of 7-day-old wheat seedlings. A relationship between an increase in wheat freezing tolerance and changes in some important indicators for its formation-growth intensity, the activity of the photosynthetic apparatus and oxidative processes, and the accumulation of soluble sugars in seedlings-was established. Assumptions on possible mechanisms of gold nanoparticles effects on plant freezing tolerance are discussed.


Subject(s)
Metal Nanoparticles , Seedlings , Ecosystem , Freezing , Gold , Metal Nanoparticles/toxicity , Plant Proteins
4.
Life (Basel) ; 10(2)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050697

ABSTRACT

Recent studies indicate direct links between molecular cell cycle and cell differentiation machineries. Ethylene and abscisic acid (ABA) are known to affect cell division and differentiation, but the mechanisms of such effects are poorly understood. As ethylene and ABA signaling routes may interact, we examined their involvement in cell division and differentiation in cell tissue cultures derived from several Arabidopsis thaliana plants: wild type (Col-0), and ethylene-insensitive mutants etr1-1, ctr1-1, and ein2-1. We designed an experimental setup to analyze the growth-related parameters and molecular mechanisms in proliferating cells upon short exposure to ABA. Here, we provide evidence for the ethylene-ABA signaling pathways' interaction in the regulation of cell division and differentiation as follows: (1) when the ethylene signal transduction pathway is functionally active (Col-0), the cells actively proliferate, and exogenous ABA performs its function as an inhibitor of DNA synthesis and division; (2) if the ethylene signal is not perceived (etr1-1), then, in addition to cell differentiation (tracheary elements formation), cell death can occur. The addition of exogenous ABA can rescue the cells via increasing proliferation; (3) if the ethylene signal is perceived, but not transduced (ein2-1), then cell differentiation takes place-the latter is enhanced by exogenous ABA while cell proliferation is reduced; (4) when the signal transduction pathway is constitutively active, the cells begin to exit the cell cycle and proceed to endo-reduplication (ctr1-1). In this case, the addition of exogenous ABA promotes reactivation of cell division.

5.
AoB Plants ; 5: pls052, 2013.
Article in English | MEDLINE | ID: mdl-23372921

ABSTRACT

BACKGROUND AND AIMS: After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS: The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.

6.
DNA Res ; 18(3): 137-51, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21551175

ABSTRACT

Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.


Subject(s)
Chaperonin 10/metabolism , Cyanobacteria/enzymology , Protein Serine-Threonine Kinases/metabolism , Multigene Family , Mutation , Phosphorylation , Substrate Specificity
7.
Plant Physiol ; 131(4): 1705-17, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12692329

ABSTRACT

Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction.


Subject(s)
Arabidopsis/drug effects , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Plant Growth Regulators/pharmacology , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopropanes/pharmacology , Genes, Plant/genetics , Humans , Molecular Sequence Data , Mutation/genetics , Phylogeny , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Up-Regulation/drug effects
8.
Plant Physiol ; 131(4): 1718-26, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12692330

ABSTRACT

It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants.


Subject(s)
Ethylenes/pharmacology , Monomeric GTP-Binding Proteins/metabolism , Pisum sativum/drug effects , Pisum sativum/metabolism , Protein Kinases/metabolism , Up-Regulation/drug effects , Cyclopropanes/pharmacology , Pisum sativum/enzymology , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL