Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
2.
Blood ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669631

ABSTRACT

HLA-mismatched transplants with either in vitro depletion of CD3+TCRαß/CD19 (TCRαß) cells or in vivo T-cell depletion using post-transplant cyclophosphamide (PTCY) have been increasingly used for patients with inborn errors of immunity (IEI). We performed a retrospective multicenter study via the EBMT registry on 306 children with IEI undergoing first transplant between 2010-2019 from an HLA-mismatched donor using TCRαß (n=167) or PTCY (n=139). Median age at HSCT was 1.2 years (range, 0.03-19.6 years). The 3-year overall survival (OS) was 78% (95% confidence interval (CI), 71-84%) after TCRαß and 66% (57-74%) after PTCY (p=0.013). Pre-HSCT morbidity score (hazard ratio (HR) 2.27, 1.07-4.80, p=0.032) and non-Busulfan/Treosulfan conditioning (HR 3.12, 1.98-4.92, p<0.001) were the only independent predictors of unfavorable OS. The 3-year event-free survival (EFS) was 58% (50-66%) after TCRαß and 57% (48-66%) after PTCY (p=0.804). Cumulative incidence of severe acute GvHD was higher after PTCY (15%, 9-21%) than TCRαß (6%, 2-9%, p=0.007), with no difference in chronic GvHD (PTCY, 11%, 6-17%; TCRαß, 7%, 3-11%, p=0.173). The 3-year GvHD-free EFS was 53% (44-61%) after TCRαß and 41% (32-50%) after PTCY (p=0.080). PTCY had significantly higher rates of veno-occlusive disease (14.4% versus TCRαß 4.9%, p=0.009), acute kidney injury (12.7% versus 4.6%, p=0.032) and pulmonary complications (38.2% versus 24.1%, p=0.017). Adenoviraemia (18.3% versus PTCY 8.0%, p=0.015), primary graft failure (10%, versus 5%, p=0.048), and second HSCT (17.4% versus 7.9%, p=0.023) were significantly higher in TCRαß. In conclusion, this study demonstrates that both approaches are suitable options in IEI patients, although characterized by different advantages and outcomes.

4.
Blood ; 143(15): 1476-1487, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38194689

ABSTRACT

ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.


Subject(s)
Immunologic Deficiency Syndromes , Leukocyte-Adhesion Deficiency Syndrome , Primary Immunodeficiency Diseases , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Neutrophils/metabolism , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Superoxides/metabolism
5.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38176734

ABSTRACT

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Subject(s)
Shelterin Complex , Telomerase , Telomere-Binding Proteins , Humans , Biology , Mutation , Shelterin Complex/genetics , Telomerase/genetics , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
7.
J Clin Immunol ; 44(1): 6, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117473

ABSTRACT

The burden of CMV infection and disease is important in pediatric hematopoietic stem cell transplantation (HSCT), notably in the subgroup of patients with inborn errors of immunity (IEIs). Letermovir (LMV) is now a standard of care for CMV prophylaxis in adult sero-positive (R+) recipients, but is not yet labeled for children. Published pediatric studies are still scarce. We report a monocentric real-life use of LMV in 36 HSCT pediatric recipients with IEIs considered at high-risk of CMV infection including 14 patients between 2 and 12 months of age. A homogenous dosage proportional to the body surface area was used. Pharmacokinetic (PK) was performed in 8 patients with a median of 6 years of age (range 0,6;15). The cumulative incidence of clinically significant CMV infections (CS-CMVi) and the overall survival of patients under LMV were compared to a very similar historical cohort under (val)aciclovir prophylaxis. LMV tolerance was good. As compared to the historical cohort, the incidence of CS-CMVi was significantly lower in LMV group (5 out of 36 transplants (13.9%) versus 28 of the 62 HSCT (45.2%)) (p = 0.002). Plasma LMV exposures did not significantly differ with those reported in adult patients. In this high-risk pediatric HSCT cohort transplanted for IEIs, CMV prophylaxis with LMV at a homogenous dosage was well tolerated and effective in preventing CS-CMVi compared with a historical cohort.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , Transplant Recipients , Acetates , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects
8.
Transplant Cell Ther ; 29(9): 582.e1-582.e6, 2023 09.
Article in English | MEDLINE | ID: mdl-37321401

ABSTRACT

The overall survival rate after hematopoietic stem cell transplantation (HSCT) for inborn errors of immunity (IEI) has improved considerably, and its indications have broadened. As a consequence, addressing the issue of long-term health-related quality of life (HRQoL) has become crucial. Our study focuses on the health and HRQoL of post-HSCT survivors. We conducted a multicenter prospective follow-up study enrolling IEI patients who underwent transplantation in childhood before 2009. Self-reported data from the French Childhood Immune Deficiency Long-term Cohort and the 36-item Short Form questionnaires were compiled. One hundred twelve survivors were included with a median duration period from HSCT of 15 years (range 5-37), of whom 55 underwent transplantation for a combined immunodeficiency. We show that in patients evaluated at least 5 years after HSCT, 55% are still affected by a poor or very poor health status. Poor and very poor health status correlated with an abnormal graft function, defined as host or mixed chimerism, abnormal CD3+ count, or diagnosis of chronic graft-versus-host disease (poor health: odds ratio [OR] = 2.6, 95% confidence interval [CI], 1.1-5.9, P = .028; very poor health: OR = 3.6, 95% CI, 1.1-13, P = .049). Poor health was directly linked to a poorer HRQoL. Significant improvements in graft procedures have translated into better survival rates, but we show here that about half of the transplanted patients remain affected by an altered health status with a correlation to both abnormal graft function and impaired HRQoL. Additional studies are needed to confirm the impact of those improvements on long-term health status and HRQoL.


Subject(s)
Hematopoietic Stem Cell Transplantation , Quality of Life , Humans , Prospective Studies , Follow-Up Studies , Hematopoietic Stem Cell Transplantation/methods , Health Status , Survivors
9.
J Allergy Clin Immunol ; 152(4): 949-960, 2023 10.
Article in English | MEDLINE | ID: mdl-37390900

ABSTRACT

BACKGROUND: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.


Subject(s)
Actins , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Cell Death , Mutation , Cell Movement/genetics , DNA Damage , Proteins , 1-Phosphatidylinositol 4-Kinase
10.
Eur Radiol ; 33(10): 7149-7159, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37171488

ABSTRACT

OBJECTIVES: Hemophagocytic lymphohistiocytosis (HLH) is a rare and life-threatening condition affecting young children. It is potentially triggered by Epstein-Barr virus (EBV). This study describes the neuroradiological features observed in 75 children with genetically confirmed primary HLH, comparing EBV-induced with non-EBV-induced HLH forms. METHODS: Brain MRIs between 2007 and 2021 from 75 children with HLH according to the 2004 Histiocyte Society criteria and with a confirmed HLH-related mutation, were retrospectively reviewed by two pediatric neuroradiologists blinded to EBV status and to mutation status. At diagnosis, 17 children with EBV viremia above a threshold of 1000 copies/mL were included in the EBV-induced HLH group. The remaining 58 patients were included in the non-EBV-induced HLH group. RESULTS: Of the 75 children initially included, 21 had abnormal MRI (21/75 (28%); 9/17 in the EBV-induced HLH group and 12/58 in the non-EBV-induced HLH group). All patients with abnormal MRI had neurological symptoms. Abnormal MRIs showed white matter lesions; the posterior fossa was affected in all but one case. There was no significant difference between groups regarding the localization or morphology of white matter lesions. The striatum was more frequently affected in the EBV-induced HLH group (8/9 (89%) versus 1/12 (8%), p = 0.00037). All lesions, whether in the white matter or in the basal ganglia, presented increased ADC values on diffusion weighted imaging (DWI). CONCLUSION: In this study of 75 children with genetically confirmed HLH, only children with neurological signs had abnormal brain MRI. Bilateral striatum involvement suggested an EBV-induced form of HLH. KEY POINTS: • In children with genetically proven HLH, only those with neurological signs did have brain abnormalities at MRI. • All patients with abnormal brain MRI had multiple white matter lesions with increased ADC values, including in the posterior fossa in almost all cases. • Basal ganglia and in particular the striatum were bilaterally and symmetrically affected in almost all EBV-induced HLH patients, in contrast to the non-EBV-induced HLH patients.


Subject(s)
Epstein-Barr Virus Infections , Lymphohistiocytosis, Hemophagocytic , Child , Humans , Child, Preschool , Herpesvirus 4, Human , Lymphohistiocytosis, Hemophagocytic/diagnostic imaging , Lymphohistiocytosis, Hemophagocytic/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Retrospective Studies , Corpus Striatum
11.
J Clin Immunol ; 43(6): 1436-1447, 2023 08.
Article in English | MEDLINE | ID: mdl-37171742

ABSTRACT

The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/drug therapy , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/diagnosis , Nervous System Malformations/drug therapy , Nervous System Malformations/genetics , Signal Transduction , Genetic Testing
12.
Am J Hematol ; 98(7): 1058-1069, 2023 07.
Article in English | MEDLINE | ID: mdl-37115038

ABSTRACT

The spectrum of somatic mutations in pediatric histiocytoses and their clinical implications are not fully characterized, especially for non-Langerhans cell histiocytosis (-LCH) subtypes. A cohort of 415 children with histiocytosis from the French histiocytosis registry was reviewed and analyzed for BRAFV600E . Most BRAFWT samples were analyzed by next-generation sequencing (NGS) with a custom panel of genes for histiocytosis and myeloid neoplasia. Of 415 case samples, there were 366 LCH, 1 Erdheim-Chester disease, 21 Rosai-Dorfman disease (RDD), 21 juvenile xanthogranuloma (JXG, mostly with severe presentation), and 6 malignant histiocytosis (MH). BRAFV600E was the most common mutation found in LCH (50.3%, n = 184). Among 105 non-BRAFV600E -mutated LCH case samples, NGS revealed mutations as follows: MAP2K1 (n = 44), BRAF exon 12 deletions (n = 26), and duplications (n = 8), other BRAF V600 codon mutation (n = 4), and non-MAP-kinase pathway genes (n = 5). Wild-type sequences were identified in 17.1% of samples. BRAFV600E was the only variant significantly correlated with critical presentations: organ-risk involvement and neurodegeneration. MAP-kinase pathway mutations were identified in seven RDD (mostly MAP2K1) and three JXG samples, but most samples were wild-type on NGS. Finally, two MH samples had KRAS mutations, and one had a novel BRAFG469R mutation. Rarely, we identified mutations unrelated to MAP-kinase pathway genes. In conclusion, we characterized the mutational spectrum of childhood LCH and clinical correlations of variants and subtypes. Variants responsible for JXG and RDD were not elucidated in more than half of the cases, calling for other sequencing approaches.


Subject(s)
Erdheim-Chester Disease , Histiocytosis, Langerhans-Cell , Humans , Child , Histiocytosis, Langerhans-Cell/genetics , Proto-Oncogene Proteins B-raf/genetics , Erdheim-Chester Disease/genetics , Mutation , Exons
13.
Blood ; 141(22): 2713-2726, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36952639

ABSTRACT

Dedicator of cytokinesis (DOCK) proteins play a central role in actin cytoskeleton regulation. This is highlighted by the DOCK2 and DOCK8 deficiencies leading to actinopathies and immune deficiencies. DOCK8 and DOCK11 activate CDC42, a Rho-guanosine triphosphate hydrolases involved in actin cytoskeleton dynamics, among many cellular functions. The role of DOCK11 in human immune disease has been long suspected but, to the best of our knowledge, has never been described to date. We studied 8 male patients, from 7 unrelated families, with hemizygous DOCK11 missense variants leading to reduced DOCK11 expression. The patients were presenting with early-onset autoimmunity, including cytopenia, systemic lupus erythematosus, skin, and digestive manifestations. Patients' platelets exhibited abnormal ultrastructural morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B-lymphoblastoid cell lines from patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. Knock down of DOCK11 recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells and primary activated T cells from healthy controls. Lastly, in line with the patients' autoimmune manifestations, we also observed abnormal regulatory T-cell (Treg) phenotype with profoundly reduced FOXP3 and IKZF2 expression. Moreover, we found reduced T-cell proliferation and impaired STAT5B phosphorylation upon interleukin-2 stimulation of the patients' lymphocytes. In conclusion, DOCK11 deficiency is a new X-linked immune-related actinopathy leading to impaired CDC42 activity and STAT5 activation, and is associated with abnormal actin cytoskeleton remodeling as well as Treg phenotype, culminating in immune dysregulation and severe early-onset autoimmunity.


Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Humans , Male , Actin Cytoskeleton/metabolism , Autoimmunity , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immune System Diseases/metabolism , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , T-Lymphocytes, Regulatory
14.
Sci Immunol ; 8(79): eade7953, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662884

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors , Mice , Animals , Humans , B-Lymphocytes , DNA/metabolism , Mutation
15.
Bone ; 167: 116634, 2023 02.
Article in English | MEDLINE | ID: mdl-36470372

ABSTRACT

Most patients with osteopetrosis (OPT) can be causally and curatively treated with allogeneic hematopoietic stem cell transplantation (HSCT) because osteoclasts are derived from the HSC. However, HSCT is contraindicated in some forms of OPT, namely OPT with neurodegeneration (in all patients with OSTM1 and about half of patients with CLCN7 mutations) and OPT caused by an osteoblast defect (patients with RANKL mutations). HSCT for OPT risks serious side effects, such as transplant failure, venous occlusive disease, pulmonary hypertension, and hypercalcemic crises. Nevertheless, the success rate of HSCT has improved significantly in recent decades. This applies, in particular, to HSCT from non-HLA compatible (haploidentical) donors. Therefore, nowadays an HSCT can be discussed for intermediate OPT forms. After a successful HSCT, most patients have very good quality of life, but about two-thirds are visually impaired, and in rarer cases show motor and neurological disabilities. Early diagnosis, further improvements in transplantation procedures, and advances to improve quality-of-life after transplantation are challenges for the future.


Subject(s)
Hematopoietic Stem Cell Transplantation , Osteopetrosis , Humans , Osteopetrosis/genetics , Osteopetrosis/therapy , Quality of Life , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous , Mutation , Chloride Channels/genetics
16.
Blood ; 141(1): 60-71, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36167031

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloSCT) is curative for severe inborn errors of immunity (IEIs), with recent data suggesting alloSCT in adulthood is safe and effective in selected patients. However, questions remain regarding the indications for and optimal timing of transplant. We retrospectively compared outcomes of transplanted vs matched nontransplanted adults with severe IEIs. Seventy-nine patients (aged ≥ 15 years) underwent alloSCT between 2008 and 2018 for IEIs such as chronic granulomatous disease (n = 20) and various combined immune deficiencies (n = 59). A cohort of nontransplanted patients from the French Centre de Référence Déficits Immunitaires Héréditaires registry was identified blindly for case-control analysis, with ≤3 matched controls per index patient, without replacement. The nontransplanted patients were matched for birth decade, age at last review greater than index patient age at alloSCT, chronic granulomatous disease or combined immune deficiencies, and autoimmune/lymphoproliferative complications. A total of 281 patients were included (79 transplanted, 202 nontransplanted). Median age at transplant was 21 years. Transplant indications were mainly lymphoproliferative disease (n = 23) or colitis (n = 15). Median follow-up was 4.8 years (interquartile range, 2.5-7.2). One-year transplant-related mortality rate was 13%. Estimated disease-free survival at 5 years was higher in transplanted patients (58% vs 33%; P = .007). Nontransplanted patients had an ongoing risk of severe events, with an increased mean cumulative number of recurrent events compared with transplanted patients. Sensitivity analyses removing patients with common variable immune deficiency and their matched transplanted patients confirm these results. AlloSCT prevents progressive morbidity associated with IEIs in adults, which may outweigh the negative impact of transplant-related mortality.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Adult , Young Adult , Retrospective Studies , Granulomatous Disease, Chronic/therapy , Conservative Treatment , Transplantation, Homologous/methods , Hematopoietic Stem Cell Transplantation/methods , Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Graft vs Host Disease/etiology
17.
Sci Signal ; 15(759): eabo5363, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36346836

ABSTRACT

Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density-sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated "kin-to-kin" or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density-dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.


Subject(s)
4-Butyrolactone , Microfilament Proteins , Humans , Population Density , Microfilament Proteins/metabolism , Signal Transduction
18.
Neurology ; 99(15): 660-664, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36216522

ABSTRACT

Encephalitis and encephalopathy in children represent a diagnostic challenge. We describe a patient with relapsing encephalitis in whom the differential diagnosis included acute disseminated encephalomyelitis, human herpesvirus 6 encephalitis, and hemophagocytic lymphohistiocytosis (HLH). Because of its rarity, HLH is often overlooked as a differential diagnosis in encephalitis, especially in the isolated CNS forms. As this case illustrates, inborn errors of immunity can underlie isolated encephalitis and should be included in the differential diagnosis of these presentations.


Subject(s)
Brain Diseases , Encephalitis , Lymphohistiocytosis, Hemophagocytic , Neurology , Child , Encephalitis/complications , Encephalitis/diagnosis , Humans , Inflammation , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis
19.
Nat Immunol ; 23(8): 1256-1272, 2022 08.
Article in English | MEDLINE | ID: mdl-35902638

ABSTRACT

The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an 'experiment of nature' to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent 'domino effect' that impacts stringency of tolerance and B cell fate in the periphery.


Subject(s)
B-Lymphocytes , DNA-Binding Proteins , Homeodomain Proteins , Nuclear Proteins , Cell Differentiation , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Humans , Immune Tolerance , Lymphocyte Count , Nuclear Proteins/deficiency
20.
Bone Marrow Transplant ; 57(10): 1520-1530, 2022 10.
Article in English | MEDLINE | ID: mdl-35794259

ABSTRACT

Primary immunodeficiencies (PID) are heterogeneous inborn errors of the immune system. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative and safe at the pediatric age but remains underperformed in adults. We report our experience on 32 consecutive adult patients with various PID including 17 (53%) with a combined immune deficiency, six (19%) with a disease of immune dysregulation and nine (28%) with a chronic granulomatous disease (CGD) who underwent an allo-HSCT between 2011 and 2020. The median age at transplant was 27 years (17-41). All assessable patients engrafted. The majority of patients received a fludarabine-Busulfan (FB) based regimen (FB2-3 in 16, FB4 in 12). Overall survival (OS) was 80.4% (100% for CGD and 74% for other PID patients) at 9 months and beyond (median follow-up 51.6 months). Six patients died, all in the first-year post-transplant. Cumulative incidences of grade II-IV acute GVHD/chronic GVHD were 18%/22%. Stem cell source, GVHD prophylaxis and conditioning intensity had no impact on OS. All surviving patients had over 90% donor chimerism, immune reconstitution, no sign of active PID related complications and were clinically improved. Allo-HSCT is effective in young adults PID patients with an acceptable toxicity and should be discussed in case of life-threatening PID.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Busulfan/therapeutic use , Child , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Granulomatous Disease, Chronic/therapy , Humans , Transplantation Conditioning , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...