Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Clin Infect Dis ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107255

ABSTRACT

BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.

2.
Intensive Care Med ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162823

ABSTRACT

PURPOSE: Our study aimed to provide consensus and expert clinical practice statements related to airway management in critically ill adults with a physiologically difficult airway (PDA). METHODS: An international Steering Committee involving seven intensivists and one Delphi methodology expert was convened by the Society of Critical Care Anaesthesiologists (SOCCA) Physiologically Difficult Airway Task Force. The committee selected an international panel of 35 expert clinician-researchers with expertise in airway management in critically ill adults. A Delphi process based on an iterative approach was used to obtain the final consensus statements. RESULTS: The Delphi process included seven survey rounds. A stable consensus was achieved for 53 (87%) out of 61 statements. The experts agreed that in addition to pathophysiological conditions, physiological alterations associated with pregnancy and obesity also constitute a physiologically difficult airway. They suggested having an intubation team consisting of at least three healthcare providers including two airway operators, implementing an appropriately designed checklist, and optimizing hemodynamics prior to tracheal intubation. Similarly, the experts agreed on the head elevated laryngoscopic position, routine use of videolaryngoscopy during the first attempt, preoxygenation with non-invasive ventilation, careful mask ventilation during the apneic phase, and attention to cardiorespiratory status for post-intubation care. CONCLUSION: Using a Delphi method, agreement among a panel of international experts was reached for 53 statements providing guidance to clinicians worldwide on safe tracheal intubation practices in patients with a physiologically difficult airway to help improve patient outcomes. Well-designed studies are needed to assess the effects of these practice statements and address the remaining uncertainties.

4.
Res Sq ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947064

ABSTRACT

Background: Cardiac arrest is a common and devastating emergency of both the heart and brain. More than 380,000 patients suffer out-of-hospital cardiac arrest annually in the United States. Induced cooling of comatose patients markedly improved neurological and functional outcomes in pivotal randomized clinical trials, but the optimal duration of therapeutic hypothermia has not yet been established. Methods: This study is a multi-center randomized, response-adaptive, duration (dose) finding, comparative effectiveness clinical trial with blinded outcome assessment. We investigate two populations of adult comatose survivors of cardiac arrest to ascertain the shortest duration of cooling that provides the maximum treatment effect. The design is based on a statistical model of response as defined by the primary endpoint, a weighted 90-day mRS (modified Rankin Scale, a measure of neurologic disability), across the treatment arms. Subjects will initially be equally randomized between 12, 24, and 48 hours of therapeutic cooling. After the first 200 subjects have been randomized, additional treatment arms between 12 and 48 hours will be opened and patients will be allocated, within each initial cardiac rhythm type (shockable or non-shockable), by response adaptive randomization. As the trial continues, shorter and longer duration arms may be opened. A maximum sample size of 1800 subjects is proposed. Secondary objectives are to characterize: the overall safety and adverse events associated with duration of cooling, the effect on neuropsychological outcomes, and the effect on patient reported quality of life measures. Discussion: In-vitro and in-vivo studies have shown the neuroprotective effects of therapeutic hypothermia for cardiac arrest. We hypothesize that longer durations of cooling may improve either the proportion of patients that attain a good neurological recovery or may result in better recovery among the proportion already categorized as having a good outcome. If the treatment effect of cooling is increasing across duration, for at least some set of durations, then this provides evidence of the efficacy of cooling itself versus normothermia, even in the absence of a normothermia control arm, confirming previous RCTs for OHCA survivors of shockable rhythms and provides the first prospective controlled evidence of efficacy in those without initial shockable rhythms. Trial registration: ClinicalTrials.gov (NCT04217551, 2019-12-30).

5.
Trials ; 25(1): 502, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044295

ABSTRACT

BACKGROUND: Cardiac arrest is a common and devastating emergency of both the heart and brain. More than 380,000 patients suffer out-of-hospital cardiac arrest annually in the USA. Induced cooling of comatose patients markedly improved neurological and functional outcomes in pivotal randomized clinical trials, but the optimal duration of therapeutic hypothermia has not yet been established. METHODS: This study is a multi-center randomized, response-adaptive, duration (dose) finding, comparative effectiveness clinical trial with blinded outcome assessment. We investigate two populations of adult comatose survivors of cardiac arrest to ascertain the shortest duration of cooling that provides the maximum treatment effect. The design is based on a statistical model of response as defined by the primary endpoint, a weighted 90-day mRS (modified Rankin Scale, a measure of neurologic disability), across the treatment arms. Subjects will initially be equally randomized between 12, 24, and 48 h of therapeutic cooling. After the first 200 subjects have been randomized, additional treatment arms between 12 and 48 h will be opened and patients will be allocated, within each initial cardiac rhythm type (shockable or non-shockable), by response adaptive randomization. As the trial continues, shorter and longer duration arms may be opened. A maximum sample size of 1800 subjects is proposed. Secondary objectives are to characterize: the overall safety and adverse events associated with duration of cooling, the effect on neuropsychological outcomes, and the effect on patient-reported quality of life measures. DISCUSSION: In vitro and in vivo studies have shown the neuroprotective effects of therapeutic hypothermia for cardiac arrest. We hypothesize that longer durations of cooling may improve either the proportion of patients that attain a good neurological recovery or may result in better recovery among the proportion already categorized as having a good outcome. If the treatment effect of cooling is increasing across duration, for at least some set of durations, then this provides evidence of the efficacy of cooling itself versus normothermia, even in the absence of a normothermia control arm, confirming previous RCTs for OHCA survivors of shockable rhythms and provides the first prospective controlled evidence of efficacy in those without initial shockable rhythms. TRIAL REGISTRATION: ClinicalTrials.gov NCT04217551. Registered on 30 December 2019.


Subject(s)
Coma , Hypothermia, Induced , Multicenter Studies as Topic , Out-of-Hospital Cardiac Arrest , Randomized Controlled Trials as Topic , Humans , Hypothermia, Induced/methods , Hypothermia, Induced/adverse effects , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/physiopathology , Coma/therapy , Coma/etiology , Coma/physiopathology , Time Factors , Treatment Outcome , Recovery of Function , Neuroprotection , United States , Comparative Effectiveness Research
6.
medRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38883802

ABSTRACT

Background: Assessing COVID-19 vaccine effectiveness (VE) and severity of SARS-CoV-2 variants can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial genomic divergence from co-circulating XBB lineages. Methods: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated the effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. Results: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. Conclusions: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB lineage hospitalizations.

7.
Crit Care Explor ; 6(5): e1092, 2024 May.
Article in English | MEDLINE | ID: mdl-38725442

ABSTRACT

IMPORTANCE: Patients presenting to the emergency department (ED) with hypoxemia often have mixed or uncertain causes of respiratory failure. The optimal treatment for such patients is unclear. Both high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) are used. OBJECTIVES: We sought to compare the effectiveness of initial treatment with HFNC versus NIV for acute hypoxemic respiratory failure. DESIGN SETTING AND PARTICIPANTS: We conducted a retrospective cohort study of patients with acute hypoxemic respiratory failure treated with HFNC or NIV within 24 hours of arrival to the University of Michigan adult ED from January 2018 to December 2022. We matched patients 1:1 using a propensity score for odds of receiving NIV. MAIN OUTCOMES AND MEASURES: The primary outcome was major adverse pulmonary events (28-d mortality, ventilator-free days, noninvasive respiratory support hours) calculated using a win ratio. RESULTS: A total of 1154 patients were included. Seven hundred twenty-six (62.9%) received HFNC and 428 (37.1%) received NIV. We propensity score matched 668 of 1154 (57.9%) patients. Patients on NIV versus HFNC had lower 28-day mortality (16.5% vs. 23.4%, p = 0.033) and required noninvasive treatment for fewer hours (median 7.5 vs. 13.5, p < 0.001), but had no difference in ventilator-free days (median [interquartile range]: 28 [26, 28] vs. 28 [10.5, 28], p = 0.199). Win ratio for composite major adverse pulmonary events favored NIV (1.38; 95% CI, 1.15-1.65; p < 0.001). CONCLUSIONS AND RELEVANCE: In this observational study of patients with acute hypoxemic respiratory failure, initial treatment with NIV compared with HFNC was associated with lower mortality and fewer composite major pulmonary adverse events calculated using a win ratio. These findings underscore the need for randomized controlled trials to further understand the impact of noninvasive respiratory support strategies.


Subject(s)
Cannula , Hypoxia , Noninvasive Ventilation , Propensity Score , Respiratory Insufficiency , Humans , Noninvasive Ventilation/methods , Noninvasive Ventilation/instrumentation , Noninvasive Ventilation/adverse effects , Retrospective Studies , Male , Female , Middle Aged , Hypoxia/therapy , Hypoxia/mortality , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Oxygen Inhalation Therapy/methods , Oxygen Inhalation Therapy/instrumentation , Cohort Studies , Acute Disease , Emergency Service, Hospital/statistics & numerical data , Treatment Outcome
8.
CHEST Crit Care ; 2(1)2024 Mar.
Article in English | MEDLINE | ID: mdl-38645483

ABSTRACT

BACKGROUND: The optimal strategy for initial respiratory support in patients with respiratory failure associated with COVID-19 is unclear, and the initial strategy may affect outcomes. RESEARCH QUESTION: Which initial respiratory support strategy is associated with improved outcomes in patients with COVID-19 with acute respiratory failure? STUDY DESIGN AND METHODS: All patients with COVID-19 requiring respiratory support and admitted to a large health care network were eligible for inclusion. We compared patients treated initially with noninvasive respiratory support (NIRS; noninvasive positive pressure ventilation by facemask or high-flow nasal oxygen) with patients treated initially with invasive mechanical ventilation (IMV). The primary outcome was time to in-hospital death analyzed using an inverse probability of treatment weighted Cox model adjusted for potential confounders. Secondary outcomes included unweighted and weighted assessments of mortality, lengths of stay (ICU and hospital), and time to intubation. RESULTS: Nearly one-half of the 2,354 patients (47%) who met inclusion criteria received IMV first, and 53% received initial NIRS. Overall, in-hospital mortality was 38% (37% for IMV and 39% for NIRS). Initial NIRS was associated with an increased hazard of death compared with initial IMV (hazard ratio, 1.42; 95% CI, 1.03-1.94), but also an increased hazard of leaving the hospital sooner that waned with time (noninvasive support by time interaction: hazard ratio, 0.97; 95% CI, 0.95-0.98). INTERPRETATION: Patients with COVID-19 with acute hypoxemic respiratory failure initially treated with NIRS showed an increased hazard of in-hospital death.

9.
JAMA Netw Open ; 7(4): e244954, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38573635

ABSTRACT

Importance: On June 21, 2023, the Centers for Disease Control and Prevention recommended the first respiratory syncytial virus (RSV) vaccines for adults aged 60 years and older using shared clinical decision-making. Understanding the severity of RSV disease in adults can help guide this clinical decision-making. Objective: To describe disease severity among adults hospitalized with RSV and compare it with the severity of COVID-19 and influenza disease by vaccination status. Design, Setting, and Participants: In this cohort study, adults aged 18 years and older admitted to the hospital with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 US states from February 1, 2022, to May 31, 2023. Clinical data during each patient's hospitalization were collected using standardized forms. Data were analyzed from August to October 2023. Exposures: RSV, SARS-CoV-2, or influenza infection. Main Outcomes and Measures: Using multivariable logistic regression, severity of RSV disease was compared with COVID-19 and influenza severity, by COVID-19 and influenza vaccination status, for a range of clinical outcomes, including the composite of invasive mechanical ventilation (IMV) and in-hospital death. Results: Of 7998 adults (median [IQR] age, 67 [54-78] years; 4047 [50.6%] female) included, 484 (6.1%) were hospitalized with RSV, 6422 (80.3%) were hospitalized with COVID-19, and 1092 (13.7%) were hospitalized with influenza. Among patients with RSV, 58 (12.0%) experienced IMV or death, compared with 201 of 1422 unvaccinated patients with COVID-19 (14.1%) and 458 of 5000 vaccinated patients with COVID-19 (9.2%), as well as 72 of 699 unvaccinated patients with influenza (10.3%) and 20 of 393 vaccinated patients with influenza (5.1%). In adjusted analyses, the odds of IMV or in-hospital death were not significantly different among patients hospitalized with RSV and unvaccinated patients hospitalized with COVID-19 (adjusted odds ratio [aOR], 0.82; 95% CI, 0.59-1.13; P = .22) or influenza (aOR, 1.20; 95% CI, 0.82-1.76; P = .35); however, the odds of IMV or death were significantly higher among patients hospitalized with RSV compared with vaccinated patients hospitalized with COVID-19 (aOR, 1.38; 95% CI, 1.02-1.86; P = .03) or influenza disease (aOR, 2.81; 95% CI, 1.62-4.86; P < .001). Conclusions and Relevance: Among adults hospitalized in this US cohort during the 16 months before the first RSV vaccine recommendations, RSV disease was less common but similar in severity compared with COVID-19 or influenza disease among unvaccinated patients and more severe than COVID-19 or influenza disease among vaccinated patients for the most serious outcomes of IMV or death.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , United States/epidemiology , Adult , Humans , Female , Middle Aged , Aged , Male , Respiratory Syncytial Viruses , Influenza, Human/epidemiology , Cohort Studies , Hospital Mortality , COVID-19/epidemiology , SARS-CoV-2 , Influenza Vaccines/therapeutic use , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/therapy
10.
J Am Coll Emerg Physicians Open ; 5(2): e13129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38434097

ABSTRACT

Cardiac arrest is a leading contributor to morbidity and mortality in the United States. Survival has been historically dependent on high-quality cardiopulmonary resuscitation (CPR) and rapid defibrillation. However, a large percentage of patients remain in refractory cardiac arrest despite adherence to structured advanced cardiac life support algorithms in which these factors are emphasized. Veno-arterial extracorporeal membrane oxygenation is becoming an increasingly used rescue therapy for patients in refractory cardiac arrest to restore oxygen delivery by extracorporeal CPR (ECPR). Recently published clinical trials have provided new insights into ECPR for patients who sustain an outside hospital cardiac arrest (OHCA). In this narrative review, we summarize the rationale for, results of, and remaining questions from these recently published clinical trials. The existing observational data combined with the latest clinical trials suggest ECPR improves mortality in patients in refractory arrest. However, a mixed methods trial is essential to understand the complexity, context, and effectiveness of implementing an ECPR program.

11.
J Am Coll Emerg Physicians Open ; 5(2): e13118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38464331

ABSTRACT

Acute respiratory failure is a common reason for emergency department visits and hospital admissions. Diverse underlying physiologic abnormalities lead to unique aspects about the most common causes of acute respiratory failure: acute decompensated heart failure, acute exacerbation of chronic obstructive pulmonary disease, and acute de novo hypoxemic respiratory failure. Noninvasive respiratory support strategies are increasingly used methods to support work of breathing and improve gas exchange abnormalities to improve outcomes relative to conventional oxygen therapy or invasive mechanical ventilation. Noninvasive respiratory support includes noninvasive positive pressure ventilation and nasal high flow, each with unique physiologic mechanisms. This paper will review the physiology of respiratory failure and noninvasive respiratory support modalities and offer data and guideline-driven recommendations in the context of key clinical controversies.

12.
MMWR Morb Mortal Wkly Rep ; 73(8): 180-188, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421945

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Advisory Committees , Emergency Service, Hospital , Hospitalization
13.
Clin Exp Emerg Med ; 11(2): 136-144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286512

ABSTRACT

Preoxygenation during the peri-intubation period is now considered a critical aspect of rapid sequence intubation and an important skill for emergency medicine and critical care providers. Peri-intubation hypoxemia carries significant risk, including cardiac arrest, and care must be taken for appropriate management including through apnea and initiation of laryngoscopy. Appropriate selection of preoxygenation devices should depend on underlying physiology to optimize oxygenation prior to intubation attempts. A PubMed MEDLINE search was completed with selection of articles from March 2008 to March 2023 describing various techniques for preoxygenation for intubation in the critical care and operating room setting with pregnant and obese patient populations included. Prehospital and pediatric populations were excluded in this review. This review provides an overview of methods of preoxygenation with their clinical indications as well as methods for determining end points to preoxygenation and apneic oxygenation. An overview of approaches to preoxygenation was included for patients considered to have a physiologically difficult airway and obese and pregnant patient populations.

15.
CHEST Crit Care ; 1(3)2023 Dec.
Article in English | MEDLINE | ID: mdl-38434477

ABSTRACT

BACKGROUND: Postoperative respiratory failure (PRF) is associated with increased hospital charges and worse patient outcomes. Reliable prediction models can help to guide postoperative planning to optimize care, to guide resource allocation, and to foster shared decision-making with patients. RESEARCH QUESTION: Can a predictive model be developed to accurately identify patients at high risk of PRF? STUDY DESIGN AND METHODS: In this single-site proof-of-concept study, we used structured query language to extract, transform, and load electronic health record data from 23,999 consecutive adult patients admitted for elective surgery (2014-2021). Our primary outcome was PRF, defined as mechanical ventilation after surgery of > 48 h. Predictors of interest included demographics, comorbidities, and intraoperative factors. We used logistic regression to build a predictive model and the least absolute shrinkage and selection operator procedure to select variables and to estimate model coefficients. We evaluated model performance using optimism-corrected area under the receiver operating curve and area under the precision-recall curve and calculated sensitivity, specificity, positive and negative predictive values, and Brier scores. RESULTS: Two hundred twenty-five patients (0.94%) demonstrated PRF. The 18-variable predictive model included: operations on the cardiovascular, nervous, digestive, urinary, or musculoskeletal system; surgical specialty orthopedic (nonspine); Medicare or Medicaid (as the primary payer); race unknown; American Society of Anesthesiologists class ≥ III; BMI of 30 to 34.9 kg/m2; anesthesia duration (per hour); net fluid at end of the operation (per liter); median intraoperative FIO2, end title CO2, heart rate, and tidal volume; and intraoperative vasopressor medications. The optimism-corrected area under the receiver operating curve was 0.835 (95% CI,0.808-0.862) and the area under the precision-recall curve was 0.156 (95% CI, 0.105-0.203). INTERPRETATION: This single-center proof-of-concept study demonstrated that a structured query language extract, transform, and load process, based on readily available patient and intraoperative variables, can be used to develop a prediction model for PRF. This PRF prediction model is scalable for multicenter research. Clinical applications include decision support to guide postoperative level of care admission and treatment decisions.

16.
medRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234784

ABSTRACT

Rationale: Noninvasive respiratory support modalities are common alternatives to mechanical ventilation for patients with early acute hypoxemic respiratory failure. These modalities include noninvasive positive pressure ventilation, using either continuous or bilevel positive airway pressure, and nasal high flow using a high flow nasal cannula system. However, outcomes data historically compare noninvasive respiratory support to conventional oxygen rather than to mechanical ventilation. Objectives: The goal of this study was to compare the outcomes of in-hospital death and alive discharge in patients with acute hypoxemic respiratory failure when treated initially with noninvasive respiratory support compared to patients treated initially with invasive mechanical ventilation. Methods: We used a validated phenotyping algorithm to classify all patients with eligible International Classification of Diseases codes at a large healthcare network between January 1, 2018 and December 31, 2019 into noninvasive respiratory support and invasive mechanical ventilation cohorts. The primary outcome was time-to-in-hospital death analyzed using an inverse probability of treatment weighted Cox model adjusted for potential confounders, with estimated cumulative incidence curves. Secondary outcomes included time-to-hospital discharge alive. A secondary analysis was conducted to examine potential differences between noninvasive positive pressure ventilation and nasal high flow. Results: During the study period, 3177 patients met inclusion criteria (40% invasive mechanical ventilation, 60% noninvasive respiratory support). Initial noninvasive respiratory support was not associated with a decreased hazard of in-hospital death (HR: 0.65, 95% CI: 0.35 - 1.2), but was associated with an increased hazard of discharge alive (HR: 2.26, 95% CI: 1.92 - 2.67). In-hospital death varied between the nasal high flow (HR 3.27, 95% CI: 1.43 - 7.45) and noninvasive positive pressure ventilation (HR 0.52, 95% CI 0.25 - 1.07), but both were associated with increased likelihood of discharge alive (nasal high flow HR 2.12, 95 CI: 1.25 - 3.57; noninvasive positive pressure ventilation HR 2.29, 95% CI: 1.92 - 2.74). Conclusion: These observational data from a large healthcare network show that noninvasive respiratory support is not associated with reduced hazards of in-hospital death but is associated with hospital discharge alive. There are also potential differences between the noninvasive respiratory support modalities.

17.
AMIA Annu Symp Proc ; 2023: 589-598, 2023.
Article in English | MEDLINE | ID: mdl-38222385

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (PASC) is an increasingly recognized yet incompletely understood public health concern. Several studies have examined various ways to phenotype PASC to better characterize this heterogeneous condition. However, many gaps in PASC phenotyping research exist, including a lack of the following: 1) standardized definitions for PASC based on symptomatology; 2) generalizable and reproducible phenotyping heuristics and meta-heuristics; and 3) phenotypes based on both COVID-19 severity and symptom duration. In this study, we defined computable phenotypes (or heuristics) and meta-heuristics for PASC phenotypes based on COVID-19 severity and symptom duration. We also developed a symptom profile for PASC based on a common data standard. We identified four phenotypes based on COVID-19 severity (mild vs. moderate/severe) and duration of PASC symptoms (subacute vs. chronic). The symptoms groups with the highest frequency among phenotypes were cardiovascular and neuropsychiatric with each phenotype characterized by a different set of symptoms.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Disease Progression , Heuristics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL