Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5184, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37626044

ABSTRACT

Transmission electron microscopy is a pivotal instrument in materials and biological sciences due to its ability to provide local structural and spectroscopic information on a wide range of materials. However, the electron detectors used in scanning transmission electron microscopy are often unable to provide quantified information, that is the number of electrons impacting the detector, without exhaustive calibration and processing. This results in arbitrary signal values with slow response times that cannot be used for quantification or comparison to simulations. Here we demonstrate and optimise a hardware signal processing approach to augment electron detectors to perform single electron counting.

2.
Nanoscale ; 14(42): 15651-15662, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36189726

ABSTRACT

Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe2, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe2 flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm2 V-1 s-1. We also demonstrate the tuneability of doping to p-type transport with hole mobilities of 50 cm2 V-1 s-1 after annealing in air. n-Doping has been attributed to the presence of Zn adatoms on the WSe2 flakes as revealed by X-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe2 flakes. Monolayer WSe2 flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.

3.
Acta Biomater ; 145: 416-426, 2022 06.
Article in English | MEDLINE | ID: mdl-35367631

ABSTRACT

The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. This experimental design was intended to clarify the relationship between elemental profile/microstructure and biocompatibility for the Zn-Ag system. We found that the quinary alloy system (Zn-4Ag-0.8Cu-0.6Mn-0.15Zr) performed significantly better, in terms of histomorphometry, than any alloy system we have evaluated to date. Furthermore, when solution treated to increase strength and ductility and reduce the fraction of Ag-rich phases, the quinary alloy's biocompatibility further improved. In vitro corrosion testing and metallographic analysis of in vivo implants demonstrated a more uniform mode of corrosion for the solution treated alloy. We conclude that Zn-Ag alloys can be engineered through alloying to substantially reduce neointimal growth. The positive effect on neointimal growth can be further enhanced by dissolving the AgZn3 precipitates in the Zn matrix to improve the corrosion uniformity. These findings demonstrate that neointimal-forming cells can be regulated by elemental additions and microstructural changes in degradable Zn-based implant materials. STATEMENT OF SIGNIFICANCE: The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here, selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. We found that applying a thermal treatment restores mechanical strength and mitigates the strain rate sensitivity of Zn-Ag alloys by dissolving AgZn3 precipitates. Ag-rich nano-precipitates in Zn decrease biocompatibility, a phenomenon that can be counteracted by dissolving the AgZn3 precipitates in the bulk Zn matrix.


Subject(s)
Alloys , Zinc , Absorbable Implants , Alloys/chemistry , Alloys/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Corrosion , Materials Testing , Stents , Zinc/chemistry , Zinc/pharmacology
4.
Acta Biomater ; 105: 319-335, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31982587

ABSTRACT

Zn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.0Ag and ternary Zn-4.0Ag-xMn (where x = 0.2-0.6wt%) alloys. An experimental methodology was designed by cold working followed by a thermal treatment on extruded alloys, through which the effects of the grain size and precipitates could be thoroughly investigated. Microstructural observations revealed a significant grain refinement during wire drawing, leading to an ultrafine-grained (UFG) structure with a size of 700 nm and 200 nm for the Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. Mn showed a powerful grain refining effect, as it promoted the dynamic recrystallization. Furthermore, cold working resulted in dynamic precipitation of AgZn3 particles, distributing throughout the Zn matrix. Such precipitates triggered mechanical degradation through an activation of Zn/AgZn3 boundary sliding, reducing the tensile strength by 74% and 57% for Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. The observed precipitation softening caused a strong strain rate sensitivity in cold drawn alloys. Short-time annealing significantly mitigated the mechanical instability by reducing the AgZn3 fraction. The ternary alloy wire showed superior microstructural stability relative to its Mn-free counterpart due to the pinning effect of Mn-rich particles on the grain boundaries. Eventually, a shift of the corrosion regime from localized to more uniform was observed after the heat treatment, mainly due to the dissolution of AgZn3 precipitates. STATEMENT OF SIGNIFICANCE: Owing to its promising biodegradability, zinc has been recognized as a potential biodegradable material for stenting applications. However, Zn's poor strength alongside intrinsic mechanical instability have propelled researchers to search for Zn alloys with improved mechanical properties. Although extensive researches have been conducted to satisfy the mentioned concerns, no Zn-based alloys with stabilized mechanical properties have yet been reported. In this work, the mechanical properties and stability of the Zn-Ag-based alloys were systematically evaluated as a function of microstructural features. We found that the microstructure design in Zn alloys can be used to find an effective strategy to not only improve the strength and suppress the mechanical instability but also to minimize any damage by augmenting the corrosion uniformity.


Subject(s)
Absorbable Implants , Alloys/chemistry , Blood Vessels/pathology , Stents , Zinc/chemistry , Corrosion , Materials Testing , Solutions , Stress, Mechanical , Tensile Strength , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...