Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(5): 155, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592550

ABSTRACT

Recent studies have found arsenic contamination of drinking water in some parts of Iran, as in many other countries. Thus, a comprehensive systematic review is necessary to assess the distribution and concentration of arsenic in drinking water sources. For this purpose, articles published from the first identification until December 2023, were retrieved from various national and international databases. Of all the studies examined (11,726), 137 articles were selected for review based on their conceptual relationship to this survey. A review of the extracted studies presented that ICP methods (ICP-MS, ICP-OES, 56%) and atomic absorption spectrophotometry (AAS, 34.1%) were the two most commonly used techniques for the analysis of arsenic in water samples. The order of arsenic content in the defined study areas is descending, as follows: northwest ˃ southeast ˃ southwest ˃ northeast. A review of studies performed in Iran depicted that provinces such as Kurdistan, Azerbaijan, and Kerman have the highest arsenic concentrations in water resources. Accordingly, the maximum concentration of arsenic was reported in Rayen, Kerman, and ranged from < 0.5-25,000 µg/L. The primary cause of elevated arsenic levels in water resources appears to be geologic structure, including volcanic activity, biogeochemical processes, sulfur-bearing volcanic rocks, Jurassic shale, the spatial coincidence of arsenic anomalies in tube wells and springs, and, to some extent, mining activities. The findings of the presented survey indicate that it is essential to take serious measures at the national level to minimize the health risks of arsenic contamination from drinking water consumption.


Subject(s)
Arsenic , Drinking Water , Iran , Databases, Factual , Geology
2.
Environ Monit Assess ; 195(12): 1443, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37945976

ABSTRACT

Antibiotics are one of the most widely used drug groups. The presence of antibiotics in urban water sources and sewage creates many environmental and medical risks for humans and other living organisms. In this study, the potential of zinc oxide (ZnO) coated on almond shell activated carbon (ACA-ZnO) in removing ciprofloxacin (CIP) from aqueous solutions was investigated. Almond shell was used to make activated carbon. Zinc oxide nanoparticles were prepared by the sol-gel method, and finally, ZnO nanoparticles were bonded to activated carbon. The effect of independent parameters pH, contact time, adsorbent dose, and initial CIP concentration on CIP removal efficiency using ACA-ZnO was investigated by response surface methodology. Optimal removal was obtained at pH = 5.4, CIP initial concentration = 7.4 mg/L, adsorbent dose = 0.82 g/L, and reaction time = 67.3 min. This study followed a quadratic model (R2 = 0.958). The best model of adsorption isotherm fits with the Freundlich model (R2 = 0.9972) and the maximum capacity was 251.42 mg/g adsorption kinetics, and pseudo-second-order kinetic model (R2 = 0.959). The results of this study showed that ACA-ZnO as an adsorbent is very efficient, without environmental side effect and cost-benefit.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Zinc Oxide , Humans , Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Zinc Oxide/chemistry , Charcoal , Environmental Monitoring , Water/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
3.
Environ Monit Assess ; 195(4): 527, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000307

ABSTRACT

The application of the coagulation/flocculation process is very important due to its simplicity in removing turbidity. Due to the disadvantages of using chemical coagulants in water and the lack of sufficient effect of natural materials alone in removing turbidity for proper performance, the simultaneous use of chemical and natural coagulants is the best way to reduce the harmful effects of chemical coagulants in water. In this study, the application of poly aluminum chloride (PAC) as a chemical coagulant and rice starch as a natural coagulant aid to remove turbidity from aqueous solutions was investigated. Effects of the above coagulants on the four main factors, coagulant dose (0-10 mg/L), coagulant adjuvant dose (0-0.1 mg/L), pH (5-9), turbidity (NTU 0-50), and each five levels were assessed using a central composite design (CCD). Under the optimized conditions, the maximum turbidity elimination efficiency was found to be 96.6%. The validity and adequacy of the proposed model (quadratic model) were confirmed by the corresponding statistics (i.e., F-value of 23.3, p-values of 0.0001, and lack of fit of 0.877 for the model, respectively, R2 = 0.88, R2adj. = 0.84, R2 pred = 0.79, AP = 22.04).


Subject(s)
Water Purification , Aluminum Chloride/chemistry , Flocculation , Oryza , Starch/chemistry , Water , Water Purification/methods , Models, Chemical
4.
Avicenna J Med Biotechnol ; 12(4): 230-235, 2020.
Article in English | MEDLINE | ID: mdl-33014314

ABSTRACT

BACKGROUND: Remaining pharmaceutical compounds cause environmental pollution. Therefore, refining these compounds has become a major challenge. In this study, the function of eliminating Cefixime (CFX) using rice starch was evaluated under controlled conditions. METHODS: Response Surface Methodology (RSM) was used to design, analyze, and optimize experiments, and the interaction between four variables including pH (3-9), rice starch dose (0-300 mg/L), CFX initial concentration (0-16 mg/L) and time (20-120 min) was investigated on CFX removal. RESULTS: The optimum pH, starch dose, initial concentration and time were 4.5, 225 mg/L, 7.9 mg/L and 95 min, respectively. The maximum efficiency of CFX removal was 70.22%. According to RSM, this study follows a quadratic model (R2=0.954). CONCLUSION: Rice starch has been successful in removing CFX from the aqueous solution. Therefore, it is recommended to utilize this process to remove CFX from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...