Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 85(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31585990

ABSTRACT

The methylotrophic yeast Pichia pastoris has been utilized for heterologous protein expression for over 30 years. Because P. pastoris secretes few of its own proteins, the exported recombinant protein is the major polypeptide in the extracellular medium, making purification relatively easy. Unfortunately, some recombinant proteins intended for secretion are retained within the cell. A mutant strain isolated in our laboratory, containing a disruption of the BGS13 gene, displayed elevated levels of secretion for a variety of reporter proteins. The Bgs13 peptide (Bgs13p) is similar to the Saccharomyces cerevisiae protein kinase C 1 protein (Pkc1p), but its specific mode of action is currently unclear. To illuminate differences in the secretion mechanism between the wild-type (wt) strain and the bgs13 strain, we determined that the disrupted bgs13 gene expressed a truncated protein that had reduced protein kinase C activity and a different location in the cell, compared to the wt protein. Because the Pkc1p of baker's yeast plays a significant role in cell wall integrity, we investigated the sensitivity of the mutant strain's cell wall to growth antagonists and extraction by dithiothreitol, determining that the bgs13 strain cell wall suffered from inherent structural problems although its porosity was normal. A proteomic investigation of the bgs13 strain secretome and cell wall-extracted peptides demonstrated that, compared to its wt parent, the bgs13 strain also displayed increased release of an array of normally secreted, endogenous proteins, as well as endoplasmic reticulum-resident chaperone proteins, suggesting that Bgs13p helps regulate the unfolded protein response and protein sorting on a global scale.IMPORTANCE The yeast Pichia pastoris is used as a host system for the expression of recombinant proteins. Many of these products, including antibodies, vaccine antigens, and therapeutic proteins such as insulin, are currently on the market or in late stages of development. However, one major weakness is that sometimes these proteins are not secreted from the yeast cell efficiently, which impedes and raises the cost of purification of these vital proteins. Our laboratory has isolated a mutant strain of Pichia pastoris that shows enhanced secretion of many proteins. The mutant produces a modified version of Bgs13p. Our goal is to understand how the change in the Bgs13p function leads to improved secretion. Once the Bgs13p mechanism is illuminated, we should be able to apply this understanding to engineer new P. pastoris strains that efficiently produce and secrete life-saving recombinant proteins, providing medical and economic benefits.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Pichia/genetics , Pichia/metabolism , Protein Translocation Systems/genetics , Protein Translocation Systems/metabolism , Amino Acid Sequence , Bacterial Secretion Systems , Cell Wall/chemistry , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , Molecular Chaperones/metabolism , Protein Kinase C/metabolism , Proteomics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Biochem Biophys Res Commun ; 491(1): 25-32, 2017 09 09.
Article in English | MEDLINE | ID: mdl-28688764

ABSTRACT

Receptor Expressed in Lymphoid Tissues (RELT) is a human Tumor Necrosis Factor Receptor (TNFR) family member that has two identified homologous binding partners, RELL1 and RELL2. This study sought to further understand the pattern of RELT expression, the functional role of RELT family members, and the mechanism of RELT-induced apoptosis. RELT protein expression was detected in the spleen, lymph node, brain, breast and peripheral blood leukocytes (PBLs). A smaller than expected size of RELT was observed in PBLs, suggesting a proteolytically cleaved form of RELT. RELL1 and RELL2 overexpression activated the p38 MAPK pathway more substantially than RELT in HEK-293 cells, and this activation of p38 by RELT family members was blocked by dominant-negative mutant forms of OSR1 or TRAF2, implicating these molecules in RELT family member signaling. RELT was previously shown to induce apoptosis in human epithelial cells despite lacking the characteristic death domain (DD) found in other TNFRs. Seven deletion mutants of RELT that lacked differing portions of the intracellular domain were created to assess whether RELT possesses a novel DD. None of the deletion mutants induced apoptosis as efficiently as full-length RELT, a result that is consistent with a novel DD being located at the carboxyl-terminus. Interestingly, induction of apoptotic morphology by RELT overexpression was not prevented when signaling by FADD or Caspase-8 was blocked, indicating RELT induces apoptosis by a pathway distinct from other death-inducing TNFRs such as TNFR1. Collectively, this study provides more insights into RELT expression, RELT family member function, and the mechanism of RELT-induced death.


Subject(s)
Apoptosis/physiology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Humans , Organ Specificity/physiology , Tissue Distribution
3.
Gene ; 598: 50-62, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27984193

ABSTRACT

The methylotrophic yeast Pichia pastoris has been used extensively for expressing recombinant proteins because it combines the ease of genetic manipulation, the ability to provide complex posttranslational modifications and the capacity for efficient protein secretion. The most successful and commonly used secretion signal leader in Pichia pastoris has been the alpha mating factor (MATα) prepro secretion signal. However, limitations exist as some proteins cannot be secreted efficiently, leading to strategies to enhance secretion efficiency by modifying the secretion signal leader. Based on a Jpred secondary structure prediction and knob-socket modeling of tertiary structure, numerous deletions and duplications of the MATα prepro leader were engineered to evaluate the correlation between predicted secondary structure and the secretion level of the reporters horseradish peroxidase (HRP) and Candida antarctica lipase B. In addition, circular dichroism analyses were completed for the wild type and several mutant pro-peptides to evaluate actual differences in secondary structure. The results lead to a new model of MATα pro-peptide signal leader, which suggests that the N and C-termini of MATα pro-peptide need to be presented in a specific orientation for proper interaction with the cellular secretion machinery and for efficient protein secretion.


Subject(s)
Fungal Proteins/genetics , Mating Factor/genetics , Peptides/genetics , Pichia/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Horseradish Peroxidase/genetics , Horseradish Peroxidase/metabolism , Lipase/genetics , Lipase/metabolism , Mating Factor/chemistry , Mating Factor/metabolism , Models, Molecular , Mutation , Peptides/chemistry , Peptides/metabolism , Pichia/metabolism , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Sorting Signals/genetics , Protein Structure, Secondary , Recombinant Fusion Proteins/metabolism , Sequence Deletion
4.
Protein Expr Purif ; 124: 1-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27079175

ABSTRACT

The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris.


Subject(s)
Escherichia coli Proteins , Escherichia coli/genetics , Green Fluorescent Proteins , Periplasmic Binding Proteins , Pichia/metabolism , Recombinant Fusion Proteins , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Periplasmic Binding Proteins/genetics , Periplasmic Binding Proteins/metabolism , Pichia/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Gene ; 519(2): 311-7, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23454485

ABSTRACT

The methylotrophic yeast, Pichia pastoris, has been genetically engineered to produce many heterologous proteins for industrial and research purposes. In order to secrete proteins for easier purification from the extracellular medium, the coding sequence of recombinant proteins is initially fused to the Saccharomyces cerevisiae α-mating factor secretion signal leader. Extensive site-directed mutagenesis of the prepro-region of the α-mating factor secretion signal sequence was performed in order to determine the effects of various deletions and substitutions on expression. Though some mutations clearly dampened protein expression, deletion of amino acids 57-70, corresponding to the predicted 3rd alpha helix of α-mating factor secretion signal, increased secretion of reporter proteins horseradish peroxidase and lipase at least 50% in small-scale cultures. These findings raise the possibility that the secretory efficiency of the leader can be further enhanced in the future.


Subject(s)
Gene Expression Regulation, Fungal , Mutation , Peptides/metabolism , Pichia/genetics , Recombinant Proteins/biosynthesis , Amino Acid Sequence , Blotting, Western , Gene Deletion , Genes, Reporter , Horseradish Peroxidase/genetics , Horseradish Peroxidase/metabolism , Lipase/genetics , Lipase/metabolism , Mating Factor , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptides/genetics , Pichia/metabolism , Plasmids , Real-Time Polymerase Chain Reaction , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...