Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Bioanal Chem ; 406(1): 201-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253407

ABSTRACT

A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60(+) and Ar1700(+) for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60(+) was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60(+) dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700(+), were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.


Subject(s)
Argon/chemistry , Fullerenes/chemistry , Phenylalanine/chemistry , Tyrosine/chemistry , Silicon/chemistry , Surface Properties , Thermodynamics , Volatilization
2.
Analyst ; 138(22): 6801-10, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24058924

ABSTRACT

With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

3.
Anal Chem ; 85(10): 5064-70, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23590425

ABSTRACT

Organic depth profiling using secondary ion mass spectrometry (SIMS) provides valuable information about the three-dimensional distribution of organic molecules. However, for a range of materials, commonly used cluster ion beams such as C60(n+) do not yield useful depth profiles. A promising solution to this problem is offered by the use of nitric oxide (NO) gas dosing during sputtering to reduce molecular cross-linking. In this study a C60(2+) ion beam is used to depth profile a polystyrene film. By systematically varying NO pressure and sample temperature, we evaluate their combined effect on organic depth profiling. Profiles are also acquired from a multilayered polystyrene and polyvinylpyrrolidone film and from a polystyrene/polymethylmethacrylate bilayer, in the former case by using an optimized set of conditions for C60(2+) and, for comparison, an Ar2000(+) ion beam. Our results show a dramatic improvement for depth profiling with C60(2+) using NO at pressures above 10(-6) mbar and sample temperatures below -75 °C. For the multilayered polymer film, the depth profile acquired using C60(2+) exhibits high signal stability with the exception of an initial signal loss transient and thus allows for successful chemical identification of each of the six layers. The results demonstrate that NO dosing can significantly improve SIMS depth profiling analysis for certain organic materials that are difficult to analyze with C60(n+) sputtering using conventional approaches/conditions. While the analytical capability is not as good as large gas cluster ion beams, NO dosing comprises a useful low-cost alternative for instruments equipped with C60(n+) sputtering.


Subject(s)
Argon/chemistry , Fullerenes/chemistry , Mass Spectrometry/methods , Nitric Oxide/chemistry , Polystyrenes/chemistry , Povidone/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL