Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Ophthalmic Genet ; : 1-6, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953718

ABSTRACT

PURPOSE: Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy. Within corneal development, primary cilia serve a critical role. We sought to investigate the association of BBS with corneal astigmatism among a cohort of patients with BBS. METHODS: This was a cross-sectional, retrospective study performed at a pediatric ophthalmology department of a tertiary hospital. The study enrolled 45 patients with genetically confirmed Bardet-Biedl syndrome, encompassing a total of 90 eyes observed from February 2011 to August 2021. Spherical and cylindrical refractive errors and keratometry outcome measures, including diopter (D) values at the flattest and steepest axes, were recorded. Corneal astigmatism of greater than 3D is considered extreme corneal astigmatism based on previously published data. RESULTS: Among 45 patients (M:26; F:19), the mean age was 16.4 ± 8.2 years, and the mean best-corrected visual acuity was 20/60. The most common molecular diagnosis was BBS1, seen in 24 of 45 (53.3%). Among all the patients, the mean spherical refractive error was -2.9 ± 3.8D. The mean cylindrical refractive error was 2.6 ± 1.5D. The mean keratometry values at the flattest axis was 43.5 ± 5.3D (39.4-75.0) and at the steepest axis was 47.2 ± 7.3D(41.5-84.0). Among all the patients with BBS, the mean corneal astigmatism was 3.7 ± 1.0D(0.5-7.1), which is considered extreme. CONCLUSION: A cohort of individuals with BBS demonstrated high corneal astigmatism. These results suggest an association between corneal astigmatism and primary ciliary dysfunction and may assist in clinical management and future therapeutic targets among BBS and other corneal disorders.

2.
Article in English | MEDLINE | ID: mdl-38851486

ABSTRACT

BACKGROUND: The relationship between keratoconus and various allergic diseases has been a subject of controversy. OBJECTIVE: In the present study, a systematic review and meta-analysis was conducted to investigate the association between allergic rhinitis (AR) and keratoconus. METHODS: Relevant and eligible studies from PubMed, Web of Science, and Cochrane Library were systematically reviewed to evaluate the association between AR and keratoconus. Observational studies containing the number of patients with and without keratoconus and the number of patients with keratoconus diagnosed with or without AR were included. Two reviewers independently screened for eligible studies and extracted data from the included studies. A bivariate meta-analysis was conducted to compare the odds of keratoconus occurrence in patients with and without AR. The main outcome was the odds ratio of keratoconus occurrence in patients with AR. A sensitivity test was performed using the adjusted odds ratio reported in the included studies to validate the findings. RESULTS: Seven studies involving 775,574 participants were included in this meta-analysis. Among them, 29,082 patients had keratoconus. The pooled odds ratio of keratoconus occurrence in patients with AR was 1.71 (95% confidence interval [CI]: 1.36-2.15; P < 0.001; I2 = 96%), and the pooled adjusted odds ratio was 1.72 (95% CI: 1.23-2.40; P = 0.001; I2 = 97%). CONCLUSION: Patients with AR showed significantly higher odds of keratoconus occurrence than those without AR. Future studies are warranted to investigate the causal relationship and evaluate the cost-effectiveness of early screening using methods such as corneal topography and referral for keratoconus in patients with AR.

3.
Appl Neuropsychol Child ; : 1-11, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604218

ABSTRACT

This pilot study investigated the long-term impact of a surgery-only treatment (no exposure to other treatments, such as chemotherapy and radiation) for pediatric cerebellar low-grade gliomas on executive function, anxiety, and fear of pain (FOP) beliefs. Twelve patients who underwent surgical glioma resection during childhood (surgery age was 4-16 years, study visit age was 10-28 years), and 12 pain-free controls matched for age, sex, race, and handedness were tested. The spatial extent of resection was precisely mapped using magnetic resonance imaging (MRI). Executive function, anxiety, and FOP were assessed using validated self-report age-appropriate questionnaires for children and adults. Structured clinical interviews at a post-surgery follow-up visit were completed (average: 89 months, range: 20-99). No significant differences in FOP (FOPQ-C t[14 = 1.81, p = 0.09; FOPQ-III t[4] = 0.29, p = 0.79), executive function scores (BRIEF t[20] = 0.30, p = 0.28), or anxiety scores (MASC t[16] = 0.19, p = 0.85; MAQ t[4] = 1.80, p = 0.15) were found in pediatric or adult patients compared to pain-free controls. Clinical interviews mainly categorized pediatric patients as not anxious. One participant reported mild/subclinical anxiety, and one had moderate clinical anxiety. Neither psychologists nor patients endorsed impairments to executive functioning, anxiety, or FOP. Our pilot results suggest that pediatric cerebellar tumor survivors treated with surgery-only have favorable long-term functioning related to these themes. While these results are promising, they will need to be replicated in a larger patient sample.

4.
Am J Ophthalmol ; 259: 172-184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101593

ABSTRACT

PURPOSE: To assess the therapeutic effect of tinted lenses (FL-41) on photophobia and light-evoked brain activity using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular surface pain. DESIGN: Prospective case series. METHODS: 25 subjects from the Miami veterans affairs (VA) eye clinic were recruited based on the presence of chronic ocular pain, dry eye symptoms, and photophobia. Using a 3T MRI scanner, subjects underwent 2 fMRI scans using an event-related design based on light stimuli: one scan while wearing FL-41 lenses and one without. Unpleasantness ratings evoked by the light stimuli were collected after each scan. RESULTS: With FL-41 lenses, subjects reported decreased (n = 19), maintained (n = 2), or increased (n = 4) light-evoked unpleasantness ratings. Group analysis at baseline (no lens) revealed significant light evoked responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral insula, bilateral frontal pole, visual, precuneus, paracingulate, and anterior cingulate cortices (ACC) as well as cerebellar vermis, bilateral cerebellar hemispheric lobule VI, and bilateral cerebellar crus I and II. With FL-41 lenses, light-evoked responses were significantly decreased in bilateral S1, bilateral S2, bilateral insular, right temporal pole, precuneus, ACC, and paracingulate cortices as well as bilateral cerebellar hemispheric lobule VI. CONCLUSION: FL-41 lenses modulated photophobia symptoms in some individuals with chronic ocular pain. In conjunction, FL-41 lenses decreased activation in cortical areas involved in processing affective and sensory-discriminative dimensions of pain. Further research into these relationships will advance the ability to provide precision therapy for individuals with ocular pain.


Subject(s)
Pain , Photophobia , Humans , Photophobia/etiology , Brain , Eye Pain/diagnosis , Eye Pain/drug therapy , Eye Pain/etiology , Magnetic Resonance Imaging/methods , Neural Pathways/physiology
5.
Front Neurol ; 14: 1265082, 2023.
Article in English | MEDLINE | ID: mdl-38033775

ABSTRACT

Introduction: The factors that mediate the expression of ocular pain and the mechanisms that promote chronic ocular pain symptoms are poorly understood. Central nervous system involvement has been postulated based on observations of pain out of proportion to nociceptive stimuli in some individuals. This investigation focused on understanding functional connectivity between brain regions implicated in chronic pain in persons reporting ocular pain symptoms. Methods: We recruited a total of 53 persons divided into two cohorts: persons who reported no ocular pain, and persons who reported chronic ocular pain, irrespective of ocular surface findings. We performed a resting state fMRI investigation that was focused on subcortical brain structures including the trigeminal nucleus and performed a brief battery of ophthalmological examinations. Results: Persons in the pain cohort reported higher levels of pain symptoms relating to neuropathic pain and ocular surface disease, as well as more abnormal tear metrics (stability and tear production). Functional connectivity analysis between groups evinced multiple connections exemplifying both increases and decreases in connectivity including regions such as the trigeminal nucleus, amygdala, and sub-regions of the thalamus. Exploratory analysis of the pain cohort integrating clinical and brain function metrics highlighted subpopulations that showed unique phenotypes providing insight into pain mechanisms. Discussion: Study findings support centralized involvement in those reporting ocular-based pain and allude to mechanisms through which pain treatment services may be directed in future research.

6.
Front Neurosci ; 17: 1202341, 2023.
Article in English | MEDLINE | ID: mdl-37404468

ABSTRACT

Introduction: To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods: Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results: At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion: BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.

7.
Front Neurol ; 14: 1157625, 2023.
Article in English | MEDLINE | ID: mdl-37521287

ABSTRACT

Introduction: Parieto-frontal interactions are mediated by the superior longitudinal fasciculus (SLF) and are crucial to integrate visuomotor information and mediate fine motor control. In this study, we aimed to characterize the relation of white matter integrity of both parts of the SLF (SLF I and SLF II) to both motor outcome and recovery and its evolution over time in stroke patients with upper limb motor deficits. Materials and methods: Fractional anisotropy (FA) values over the SLF I, SLF II, and corticospinal tract (CST) and upper limb motor performance evaluated by both the upper limb Fugl-Meyer Assessment score and maximum grip strength were measured for 16 patients at 3 weeks, 6 weeks, and 12 weeks poststroke. FA changes were assessed over time using repeated-measures Friedman ANOVA, and correlations between motor recovery, motor outcome at 12 weeks, and FA values in the CST, SLF I, and SLF II at 3 weeks were performed using Spearman's rank-order correlation. Results: FA values in the affected hemisphere's SLF I and SLF II at 3 weeks correlated with motor recovery at 12 weeks when assessed by the Fugl-Meyer Assessment for upper limb extremity (rho: 0.502, p: 0.04 and rho: 0.510, p: 0.04, respectively) but not when assessed by grip strength. FA values in the SLF I and SLF II were not correlated with motor outcomes. FA values in the SLF II in the affected hemisphere changed significantly over time (p: 0.016). Conclusion: Both SLF I and SLF II appeared to participate in poststroke motor recovery of complex movements but not in the motor outcome. These results argue that visually/spatially oriented motor tasks as well as more complex motor tasks using parietal associative areas should be used for poststroke rehabilitation strategies.

9.
J Psychosom Res ; 172: 111421, 2023 09.
Article in English | MEDLINE | ID: mdl-37354748

ABSTRACT

OBJECTIVE: Placebo responses are significantly higher in children than in adults, suggesting a potential underused treatment option in pediatric care. To facilitate the clinical translation of these beneficial effects, we explored physicians' current practice, opinions, knowledge, and likelihood of recommending placebos in the future. METHODS: A cross-sectional web-based survey administered by REDCap was conducted at Boston Children's Hospital between October 2021 and March 2022. Physicians (n = 1157) were invited to participate through an email containing a link to a 23-item survey designed to assess physicians' attitudes and perceptions towards the clinical use of placebo in pediatrics. RESULTS: From 207 (18%) returned surveys, 109 (9%) were fully completed. Most respondents (79%) believed that enhancing the therapeutic components that contribute to the placebo response may be a way of improving pediatric care. However, whereas most (62%) found placebo treatments permissible, only one-third reported recommending them. In pediatrics, placebos are typically introduced as a medicine that "might help" (43%). The most common treatments recommended to enhance placebo effects are physical therapy, vitamins, and over-the-counter analgesics. Physicians most frequently recommend placebos for occasional pain, headaches, and anxiety disorders. Finally, the great majority of physicians (87%) stated they would be more likely to recommend placebo treatments if there were safety and ethical guidelines for open-label placebos. CONCLUSIONS: Placebo treatments seem permissible to physicians in pediatric care, but the development of safety and ethical guidelines may be necessary before physicians systematically incorporate the benefits of the placebo effect in pediatrics.


Subject(s)
Pediatrics , Physicians , Child , Humans , Attitude of Health Personnel , Cross-Sectional Studies , Practice Patterns, Physicians' , Surveys and Questionnaires
10.
Semin Nucl Med ; 53(6): 752-765, 2023 11.
Article in English | MEDLINE | ID: mdl-37080822

ABSTRACT

Ventilation-perfusion (V/Q) lung scans constitute one of the oldest nuclear medicine procedures, remain one of the few studies performed in the acute setting, and are amongst the few performed in the emergency setting. V/Q studies have witnessed a long fluctuation in adoption rates in parallel to continuous advances in image processing and computer vision techniques. This review provides an overview on the status of artificial intelligence (AI) in V/Q scintigraphy. To clearly assess the past, current, and future role of AI in V/Q scans, we conducted a systematic Ovid MEDLINE(R) literature search from 1946 to August 5, 2022 in addition to a manual search. The literature was reviewed and summarized in terms of methodologies and results for the various applications of AI to V/Q scans. The PRISMA guidelines were followed. Thirty-one publications fulfilled our search criteria and were grouped into two distinct categories: (1) disease diagnosis/detection (N = 22, 71.0%) and (2) cross-modality image translation into V/Q images (N = 9, 29.0%). Studies on disease diagnosis and detection relied heavily on shallow artificial neural networks for acute pulmonary embolism (PE) diagnosis and were primarily published between the mid-1990s and early 2000s. Recent applications almost exclusively regard image translation tasks from CT to ventilation or perfusion images with modern algorithms, such as convolutional neural networks, and were published between 2019 and 2022. AI research in V/Q scintigraphy for acute PE diagnosis in the mid-90s to early 2000s yielded promising results but has since been largely neglected and thus have yet to benefit from today's state-of-the art machine-learning techniques, such as deep neural networks. Recently, the main application of AI for V/Q has shifted towards generating synthetic ventilation and perfusion images from CT. There is therefore considerable potential to expand and modernize the use of real V/Q studies with state-of-the-art deep learning approaches, especially for workflow optimization and PE detection at both acute and chronic stages. We discuss future challenges and potential directions to compensate for the lag in this domain and enhance the value of this traditional nuclear medicine scan.


Subject(s)
Artificial Intelligence , Pulmonary Embolism , Humans , Pulmonary Embolism/diagnostic imaging , Lung , Radionuclide Imaging , Perfusion Imaging , Tomography, Emission-Computed, Single-Photon/methods
11.
J Cereb Blood Flow Metab ; 43(2): 198-209, 2023 02.
Article in English | MEDLINE | ID: mdl-36169033

ABSTRACT

Advances in deep learning can be applied to acute stroke imaging to build powerful and explainable prediction models that could supersede traditionally used biomarkers. We aimed to evaluate the performance and interpretability of a deep learning model based on convolutional neural networks (CNN) in predicting long-term functional outcome with diffusion-weighted imaging (DWI) acquired at day 1 post-stroke. Ischemic stroke patients (n = 322) were included from the ASTER and INSULINFARCT trials as well as the Pitié-Salpêtrière registry. We trained a CNN to predict long-term functional outcome assessed at 3 months with the modified Rankin Scale (dichotomized as good [mRS ≤ 2] vs. poor [mRS ≥ 3]) and compared its performance to two logistic regression models using lesion volume and ASPECTS. The CNN contained an attention mechanism, which allowed to visualize the areas of the brain that drove prediction. The deep learning model yielded a significantly higher area under the curve (0.83 95%CI [0.78-0.87]) than lesion volume (0.78 [0.73-0.83]) and ASPECTS (0.77 [0.71-0.83]) (p < 0.05). Setting all classifiers to the specificity as the deep learning model (i.e., 0.87 [0.82-0.92]), the CNN yielded a significantly higher sensitivity (0.67 [0.59-0.73]) than lesion volume (0.48 [0.40-0.56]) and ASPECTS (0.50 [0.41-0.58]) (p = 0.002). The attention mechanism revealed that the network learned to naturally attend to the lesion to predict outcome.


Subject(s)
Brain Ischemia , Deep Learning , Stroke , Humans , Stroke/diagnostic imaging , Stroke/pathology , Diffusion Magnetic Resonance Imaging/methods , Prognosis
12.
Am J Ophthalmol ; 246: 20-30, 2023 02.
Article in English | MEDLINE | ID: mdl-36223850

ABSTRACT

PURPOSE: To examine neural mechanisms underlying photophobia in individuals with chronic ocular surface pain by using functional magnetic resonance imaging (fMRI). DESIGN: Cross-sectional case/control analysis. METHODS: A total of 16 individuals from the Miami Veterans Affairs eye clinic underwent comprehensive ocular surface evaluations and were surveyed for ocular surface symptoms. Case patients included patients who reported chronic ocular surface pain symptoms and light sensitivity at least most of the time over 1 week. Controls included persons without chronic ocular surface pain who reported no or minimal light sensitivity. All patients viewed light stimuli during 2 fMRI scans, one before and one after topical anesthetic instillation, and rated their level of pain intensity to the stimulus at the end of each scan. Areas of brain activation in response to light stimuli presentation were correlated with pain responses and examined post- vs pre-anesthesia. RESULTS: Case patients (n = 8) reported higher pain intensity ratings than controls (n = 8) in response to light stimuli during fMRI. Case patient ratings correlated more with light-evoked activation in pain-related areas within the trigeminal brainstem, primary somatosensory cortex (S1), anterior mid-cingulate cortex (aMCC), and insula than in controls. Topical anesthesia led to varying responses in pain ratings among case patients as well as decreased light-evoked activation in S1 and aMCC. CONCLUSIONS: The trigeminal nociceptive system may contribute to photophobia in individuals with chronic ocular surface pain. We demonstrate modulation of cortical structures in this pathway with topically applied anesthetic to the eyes. Further understanding of modulatory interactions that govern ocular surface pain and photophobia is critical for developing effective, precision-based therapies.


Subject(s)
Eye Pain , Photophobia , Humans , Photophobia/diagnosis , Photophobia/etiology , Cross-Sectional Studies , Eye Pain/diagnosis , Eye Pain/etiology , Pain , Neuroimaging , Magnetic Resonance Imaging/methods
13.
Invest Radiol ; 57(8): 527-535, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35446300

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate a deep learning method designed to increase the contrast-to-noise ratio in contrast-enhanced gradient echo T1-weighted brain magnetic resonance imaging (MRI) acquisitions. The processed images are quantitatively evaluated in terms of lesion detection performance. MATERIALS AND METHODS: A total of 250 multiparametric brain MRIs, acquired between November 2019 and March 2021 at Gustave Roussy Cancer Campus (Villejuif, France), were considered for inclusion in this retrospective monocentric study. Independent training (107 cases; age, 55 ± 14 years; 58 women) and test (79 cases; age, 59 ± 14 years; 41 women) samples were defined. Patients had glioma, brain metastasis, meningioma, or no enhancing lesion. Gradient echo and turbo spin echo with variable flip angles postcontrast T1 sequences were acquired in all cases. For the cases that formed the training sample, "low-dose" postcontrast gradient echo T1 images using 0.025 mmol/kg injections of contrast agent were also acquired. A deep neural network was trained to synthetically enhance the low-dose T1 acquisitions, taking standard-dose T1 MRI as reference. Once trained, the contrast enhancement network was used to process the test gradient echo T1 images. A read was then performed by 2 experienced neuroradiologists to evaluate the original and processed T1 MRI sequences in terms of contrast enhancement and lesion detection performance, taking the turbo spin echo sequences as reference. RESULTS: The processed images were superior to the original gradient echo and reference turbo spin echo T1 sequences in terms of contrast-to-noise ratio (44.5 vs 9.1 and 16.8; P < 0.001), lesion-to-brain ratio (1.66 vs 1.31 and 1.44; P < 0.001), and contrast enhancement percentage (112.4% vs 85.6% and 92.2%; P < 0.001) for cases with enhancing lesions. The overall image quality of processed T1 was preferred by both readers (graded 3.4/4 on average vs 2.7/4; P < 0.001). Finally, the proposed processing improved the average sensitivity of gradient echo T1 MRI from 88% to 96% for lesions larger than 10 mm ( P = 0.008), whereas no difference was found in terms of the false detection rate (0.02 per case in both cases; P > 0.99). The same effect was observed when considering all lesions larger than 5 mm: sensitivity increased from 70% to 85% ( P < 0.001), whereas false detection rates remained similar (0.04 vs 0.06 per case; P = 0.48). With all lesions included regardless of their size, sensitivities were 59% and 75% for original and processed T1 images, respectively ( P < 0.001), and the corresponding false detection rates were 0.05 and 0.14 per case, respectively ( P = 0.06). CONCLUSION: The proposed deep learning method successfully amplified the beneficial effects of contrast agent injection on gradient echo T1 image quality, contrast level, and lesion detection performance. In particular, the sensitivity of the MRI sequence was improved by up to 16%, whereas the false detection rate remained similar.


Subject(s)
Contrast Media , Deep Learning , Adult , Aged , Brain/diagnostic imaging , Brain/pathology , Drug Tapering , Female , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies
14.
Neurotherapeutics ; 19(2): 491-500, 2022 03.
Article in English | MEDLINE | ID: mdl-35226342

ABSTRACT

Cerebellum is a key structure for functional motor recovery after stroke. Enhancing the cerebello-motor pathway by paired associative stimulation (PAS) might improve upper limb function. Here, we conducted a randomized, double-blind, sham-controlled pilot trial investigating the efficacy of a 5-day treatment of cerebello-motor PAS coupled with physiotherapy for promoting upper limb motor function compared to sham stimulation. The secondary objectives were to determine in the active treated group (i) whether improvement of upper limb motor function was associated with changes in corticospinal excitability or changes in functional activity in the primary motor cortex and (ii) whether improvements were correlated to the structural integrity of the input and output pathways. To that purpose, hand dexterity and maximal grip strength were assessed along with TMS recordings and multimodal magnetic resonance imaging, before the first treatment, immediately after the last one and a month later. Twenty-seven patients were analyzed. Cerebello-motor PAS was effective compared to sham in improving hand dexterity (p: 0.04) but not grip strength. This improvement was associated with increased activation in the ipsilesional primary motor cortex (p: 0.04). Moreover, the inter-individual variability in clinical improvement was partly explained by the structural integrity of the afferent (p: 0.06) and efferent pathways (p: 0.02) engaged in this paired associative stimulation (i.e., cortico-spinal and dentato-thalamo-cortical tracts). In conclusion, cerebello-motor-paired associative stimulation combined with physiotherapy might be a promising approach to enhance upper limb motor function after stroke.Clinical Trial Registration URL: http://www.clinicaltrials.gov . Unique identifier: NCT02284087.


Subject(s)
Stroke Rehabilitation , Stroke , Cerebellum , Double-Blind Method , Humans , Pilot Projects , Stroke/complications , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation/methods , Treatment Outcome
15.
Br J Ophthalmol ; 106(8): 1039-1043, 2022 08.
Article in English | MEDLINE | ID: mdl-33931393

ABSTRACT

Throughout the body, damage to peripheral nerves normally involved in nociception may produce a constellation of symptoms-including irritation, itchiness and pain. The neurobiological processes involved in corneal symptoms of dry eye (DE) and neuropathic corneal pain (NCP) have not been clearly considered in terms of nociceptive processing. The conventional underlying presumption is that a labelled line principle is responsible; that these distinct perceptions are hard coded by primary afferent inputs to the central nervous system. This presumption oversimplifies the neurobiological mechanisms underlying somatosensory perception. The labelled line perspective that DE represents a chronic pain condition does not make intuitive sense: how can an eye condition that is not painful in most cases be considered a pain condition? Does not chronic pain by definition require pain to be present? On the other hand, NCP, a term that clearly denotes a painful condition, has historically seemed to resonate with clinical significance. Both DE and NCP can share similar features, yet their differentiation is not always clear. As is often the case, clinical terms arise from different disciplines, with DE evolving from ophthalmological findings and NCP inspired by pain neurophysiology. This review evaluates the current definition of these terms, the rationale for their overlap and how the neurophysiology of itch impacts our understanding of these conditions as a continuum of the same disease. Despite the complexity of nociceptive physiology, an understanding of these mechanisms will allow us a more precise therapeutic approach.


Subject(s)
Chronic Pain , Dry Eye Syndromes , Neuralgia , Chronic Disease , Cornea/innervation , Dry Eye Syndromes/diagnosis , Eye Pain/diagnosis , Eye Pain/etiology , Humans , Neuralgia/diagnosis , Nociception
16.
Invest Radiol ; 57(2): 99-107, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34324463

ABSTRACT

MATERIALS AND METHODS: This monocentric retrospective study leveraged 200 multiparametric brain MRIs acquired between November 2019 and February 2020 at Gustave Roussy Cancer Campus (Villejuif, France). A total of 145 patients were included: 107 formed the training sample (55 ± 14 years, 58 women) and 38 the separate test sample (62 ± 12 years, 22 women). Patients had glioma, brain metastases, meningioma, or no enhancing lesion. T1, T2-FLAIR, diffusion-weighted imaging, low-dose, and standard-dose postcontrast T1 sequences were acquired. A deep network was trained to process the precontrast and low-dose sequences to predict "virtual" surrogate images for contrast-enhanced T1. Once trained, the deep learning method was evaluated on the test sample. The discrepancies between the predicted virtual images and the standard-dose MRIs were qualitatively and quantitatively evaluated using both automated voxel-wise metrics and a reader study, where 2 radiologists graded image qualities and marked all visible enhancing lesions. RESULTS: The automated analysis of the test brain MRIs computed a structural similarity index of 87.1% ± 4.8% between the predicted virtual sequences and the reference contrast-enhanced T1 MRIs, a peak signal-to-noise ratio of 31.6 ± 2.0 dB, and an area under the curve of 96.4% ± 3.1%. At Youden's operating point, the voxel-wise sensitivity (SE) and specificity were 96.4% and 94.8%, respectively. The reader study found that virtual images were preferred to standard-dose MRI in terms of image quality (P = 0.008). A total of 91 reference lesions were identified in the 38 test T1 sequences enhanced with full dose of contrast agent. On average across readers, the brain lesion SE of the virtual images was 83% for lesions larger than 10 mm (n = 42), and the associated false detection rate was 0.08 lesion/patient. The corresponding positive predictive value of detected lesions was 92%, and the F1 score was 88%. Lesion detection performance, however, dropped when smaller lesions were included: average SE was 67% for lesions larger than 5 mm (n = 74), and 56% with all lesions included regardless of their size. The false detection rate remained below 0.50 lesion/patient in all cases, and the positive predictive value remained above 73%. The composite F1 score was 63% at worst. CONCLUSIONS: The proposed deep learning method for virtual contrast-enhanced T1 brain MRI prediction showed very high quantitative performance when evaluated with standard voxel-wise metrics. The reader study demonstrated that, for lesions larger than 10 mm, good detection performance could be maintained despite a 4-fold division in contrast agent usage, unveiling a promising avenue for reducing the gadolinium exposure of returning patients. Small lesions proved, however, difficult to handle for the deep network, showing that full-dose injections remain essential for accurate first-line diagnosis in neuro-oncology.


Subject(s)
Brain Neoplasms , Deep Learning , Brain Neoplasms/diagnostic imaging , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies
17.
BMJ Open Ophthalmol ; 6(1): e000878, 2021.
Article in English | MEDLINE | ID: mdl-34901466

ABSTRACT

Though corneal collagen cross-linking (CXL) is an increasingly available and effective treatment for keratoconus, few reports have considered its impact on pain-related physiology in depth. This comprehensive narrative review summarises mechanisms underlying pain in CXL and clinical care possibilities, with the goal of future improvement in management of CXL-related pain. Postoperative pain associated with CXL is largely due to primary afferent nerve injury and, to a smaller extent, inflammation. Chronification of pain after CXL has not been reported, even as long-term nerve damage without regeneration following standard CXL treatment is frequently observed. The lack of pain chronification may be due to the minimally invasive nature of the procedure, with its rapidly recovering superficial corneal wound, and to the positive anti-inflammatory changes of the tear film that have been described after CXL. Different CXL approaches have been developed, with the transepithelial epithelial-on technique (epi-on) associated with less postsurgical pain than the gold standard, epithelial-off technique (epi-off). After the first few days, however, the difference in pain scores and need for analgesics between epi-on and epi-off disappear. Patients experience relatively high-intensity pain the first few days post-CXL, and many strategies for acute pain control following CXL have been studied. Currently, no method of pain management is considered superior or universally accepted. Acute pain following CXL is a recognised and clinically significant side effect, but few CXL studies have systematically investigated postoperative pain and its management. This review aims to improve patient pain outcomes following this increasingly common procedure.

18.
Neurosci Biobehav Rev ; 127: 876-883, 2021 08.
Article in English | MEDLINE | ID: mdl-34090918

ABSTRACT

Chronic pain and depression are two frequently co-occurring and debilitating conditions. Even though the former is treated as a physical affliction, and the latter as a mental illness, both disorders closely share neural substrates. Here, we review the association of pain with depression, especially when symptoms are lateralized on either side of the body. We also explore the overlapping regions in the forebrain implicated in these conditions. Finally, we synthesize these findings into a model, which addresses gaps in our understanding of comorbid pain and depression. Our lateralized pain-depression dyad model suggests that individuals diagnosed with depression should be closely monitored for pain symptoms in the left hemibody. Conversely, for patients in pain, with the exception of acute pain with a known source, referrals in today's pain centers for psychological evaluation should be part of standard practice, within the framework of an interdisciplinary approach to pain treatment.


Subject(s)
Chronic Pain , Depression , Humans
19.
Hum Brain Mapp ; 42(7): 2099-2114, 2021 05.
Article in English | MEDLINE | ID: mdl-33528852

ABSTRACT

Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left-hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125-175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250-450 ms) and angry (250-350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain Mapping , Cerebellum/physiopathology , Emotions/physiology , Facial Recognition/physiology , Magnetoencephalography , Social Perception , Adolescent , Cerebellum/diagnostic imaging , Child , Facial Expression , Female , Humans , Male
20.
PLoS One ; 16(1): e0244320, 2021.
Article in English | MEDLINE | ID: mdl-33395413

ABSTRACT

In some patients, migraine attacks are associated with symptoms of allodynia which can be localized (cephalic) or generalized (extracephalic). Using functional neuroimaging and cutaneous thermal stimulation, we aimed to investigate the differences in brain activation of patients with episodic migraine (n = 19) based on their allodynic status defined by changes between ictal and interictal pain tolerance threshold for each subject at the time of imaging. In this prospective imaging study, differences were found in brain activity between the ictal and interictal visits in the brainstem/pons, thalamus, insula, cerebellum and cingulate cortex. Significant differences were also observed in the pattern of activation along the trigeminal pathway to noxious heat stimuli in no allodynia vs. generalized allodynia in the thalamus and the trigeminal nucleus but there were no activation differences in the trigeminal ganglion. The functional magnetic resonance imaging (fMRI) findings provide direct evidence for the view that in migraine patients who are allodynic during the ictal phase of their attacks, the spinal trigeminal nucleus and posterior thalamus become hyper-responsive (sensitized)-to the extent that they mediate cephalic and extracephalic allodynia, respectively. In addition, descending analgesic systems seem as "switched off" in generalized allodynia.


Subject(s)
Brain/physiopathology , Hyperalgesia/pathology , Migraine Disorders/complications , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Gyrus Cinguli/physiopathology , Humans , Hyperalgesia/complications , Image Processing, Computer-Assisted , Interviews as Topic , Magnetic Resonance Imaging , Male , Middle Aged , Pain Threshold , Prospective Studies , Temperature , Thalamus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...