Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Behav ; 121(Pt B): 106575, 2021 08.
Article in English | MEDLINE | ID: mdl-31704249

ABSTRACT

In rodents, status epilepticus (SE) triggered by chemoconvulsants can differently affect the proliferation and fate of adult-born dentate granule cells (DGCs). It is unknown whether abnormal neurogenesis results from intracellular signaling associated with drug-receptor interaction, paroxysmal activity, or both. To test the contribution of these factors, we systematically compared the effects of kainic acid (KA)- and pilocarpine (PL)-induced SE on the morphology and localization of DGCs generated before or after SE in the ipsi- and contralateral hippocampi of mice. Hippocampal insult was induced by unilateral intrahippocampal (ihpc) administration of KA or PL. We employed conditional doublecortin-dependent expression of the green fluorescent protein (GFP) to label adult-born cells committed to neuronal lineage either one month before (mature DGCs) or seven days after (immature DGCs) SE. Unilateral ihpc administration of KA and PL led to bilateral epileptiform discharges and focal and generalized behavioral seizures. However, drastic granule cell layer (GCL) dispersion occurred only in the ipsilateral side of KA injection, but not in PL-treated animals. Granule cell layer dispersion was accompanied by a significant reduction in neurogenesis after SE in the ipsilateral side of KA-treated animals, while neurogenesis increased in the contralateral side of KA-treated animals and both hippocampi of PL-treated animals. The ratio of ectopic neurons in the ipsilateral hippocampus was higher among immature as compared to mature neurons in the KA model (32.8% vs. 10.0%, respectively), while the occurrence of ectopic neurons in PL-treated animals was lower than 3% among both mature and immature DGCs. Collectively, our results suggest that KA- and PL-induced SE leads to distinct cellular alterations in mature and immature DGCs. We also show different local and secondary effects of KA or PL in the histological organization of the adult DG, suggesting that these unique epilepsy models may be complementary to our understanding of the disease. NEWroscience 2018.


Subject(s)
Dentate Gyrus , Status Epilepticus , Animals , Disease Models, Animal , Hippocampus , Mice , Neurogenesis , Pilocarpine/toxicity , Status Epilepticus/chemically induced
2.
Front Neurosci ; 15: 779125, 2021.
Article in English | MEDLINE | ID: mdl-35115904

ABSTRACT

The development of neuronal circuitry required for cognition, complex motor behaviors, and sensory integration requires myelination. The role of glial cells such as astrocytes and microglia in shaping synapses and circuits have been covered in other reviews in this journal and elsewhere. This review summarizes the role of another glial cell type, oligodendrocytes, in shaping synapse formation, neuronal circuit development, and myelination in both normal development and in demyelinating disease. Oligodendrocytes ensheath and insulate neuronal axons with myelin, and this facilitates fast conduction of electrical nerve impulses via saltatory conduction. Oligodendrocytes also proliferate during postnatal development, and defects in their maturation have been linked to abnormal myelination. Myelination also regulates the timing of activity in neural circuits and is important for maintaining the health of axons and providing nutritional support. Recent studies have shown that dysfunction in oligodendrocyte development and in myelination can contribute to defects in neuronal synapse formation and circuit development. We discuss glutamatergic and GABAergic receptors and voltage gated ion channel expression and function in oligodendrocyte development and myelination. We explain the role of excitatory and inhibitory neurotransmission on oligodendrocyte proliferation, migration, differentiation, and myelination. We then focus on how our understanding of the synaptic connectivity between neurons and OPCs can inform future therapeutics in demyelinating disease, and discuss gaps in the literature that would inform new therapies for remyelination.

3.
Front Neurosci ; 14: 571315, 2020.
Article in English | MEDLINE | ID: mdl-33071745

ABSTRACT

Cell lineage in the adult hippocampus comprises multipotent and neuron-committed progenitors. In the present work, we fate-mapped neuronal progenitors using Dcx-CreERT2 and CAG-CAT-EGFP double-transgenic mice (cDCX/EGFP). We show that 3 days after tamoxifen-mediated recombination in cDCX/EGFP adult mice, GFP+ cells in the dentate gyrus (DG) co-expresses DCX and about 6% of these cells are proliferative neuronal progenitors. After 30 days, 20% of GFP+ generated from these progenitors differentiate into GFAP+ astrocytes. Unilateral intrahippocampal administration of the chemoconvulsants kainic acid (KA) or pilocarpine (PL) triggered epileptiform discharges and led to a significant increase in the number of GFP+ cells in both ipsi and contralateral DG. However, while PL favored the differentiation of neurons in both ipsi- and contralateral sides, KA stimulated neurogenesis only in the contralateral side. In the ipsilateral side, KA injection led to an unexpected increase of astrogliogenesis in the Dcx-lineage. We also observed a small number of GFP+/GFAP+ cells displaying radial-glia morphology ipsilaterally 3 days after KA administration, suggesting that some Dcx-progenitors could regress to a multipotent stage. The boosted neurogenesis and astrogliogenesis observed in the Dcx-lineage following chemoconvulsants administration correlated, respectively, with preservation or degeneration of the parvalbuminergic plexus in the DG. Increased inflammatory response, by contrast, was observed both in the DG showing increased neurogenesis or astrogliogenesis. Altogether, our data support the view that cell lineage progression in the adult hippocampus is not unidirectional and could be modulated by local network activity and GABA-mediated signaling.

4.
Parasitol Res ; 104(5): 1053-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19085009

ABSTRACT

The current therapy for leishmaniasis, which affects annually about 2 million people, is far from satisfactory. All available drugs require parenteral administration and are potentially toxic. Plant essential oils have been traditionally used in folk medicine and appear as valuable alternative source for chemotherapeutic compounds. In this study, we demonstrated the effect of essential oils from Cymbopogon citratus, Lippia sidoides, and Ocimum gratissimum on growth and ultrastructure of Leishmania chagasi promastigote forms. Steam distillation was used to isolate the essential oils, and their constituents were characterized by gas chromatography coupled to mass spectrometry and nuclear magnetic resonance. All essential oils showed in vitro inhibitory action on L. chagasi promastigotes growth in a dose-dependent way, with IC(50)/72 h of 45, 89, and 75 microg/mL for C. citratus, L. sidoides, and O. gratissimum, respectively. Drastic morphological alterations were observed in all essential oil-treated parasites, including cell swelling, accumulation of lipid droplets in the cytoplasm, and increase of acidocalcisome volume. Furthermore, aberrant-shaped cells with multi-septate body were observed by scanning electron microscopy, suggesting an additional effect on cytokinesis. Taken together, our data show that these essential oils affect the parasite viability being the C. citratus essential oil the most effective against L. chagasi.


Subject(s)
Cymbopogon/chemistry , Leishmania infantum/drug effects , Lippia/chemistry , Ocimum/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Size , Cell Survival/drug effects , Cytokinesis/drug effects , Cytoplasm/ultrastructure , Gas Chromatography-Mass Spectrometry , Inhibitory Concentration 50 , Leishmania infantum/growth & development , Leishmania infantum/physiology , Leishmania infantum/ultrastructure , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oils, Volatile/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...