Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1563-1569, 2023 07.
Article in English | MEDLINE | ID: mdl-36795166

ABSTRACT

Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.


Subject(s)
Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , DNA Damage
2.
Metab Brain Dis ; 38(2): 507-518, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36447062

ABSTRACT

Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.


Subject(s)
Niemann-Pick Disease, Type C , beta-Cyclodextrins , Animals , Niemann-Pick Disease, Type C/genetics , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/therapeutic use , beta-Cyclodextrins/metabolism , Oxidation-Reduction , Mitochondria/metabolism , Cholesterol/metabolism
3.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35487270

ABSTRACT

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Subject(s)
Niemann-Pick Disease, Type C , 1-Deoxynojirimycin/analogs & derivatives , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cholesterol , Cytokines , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Niemann-Pick Disease, Type C/drug therapy , Ubiquinone/analogs & derivatives
4.
J Inherit Metab Dis ; 43(3): 586-601, 2020 05.
Article in English | MEDLINE | ID: mdl-31943253

ABSTRACT

ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.


Subject(s)
Cholesterol/metabolism , Nanoparticles/administration & dosage , Niemann-Pick Disease, Type C/drug therapy , beta-Cyclodextrins/administration & dosage , Animals , Biological Transport , Case-Control Studies , Child , Female , Fibroblasts/drug effects , Humans , Lysosomes/metabolism , Male , Mice , Niemann-Pick Disease, Type C/metabolism , beta-Cyclodextrins/pharmacology
5.
Histol Histopathol ; 35(4): 395-403, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31495909

ABSTRACT

The posterodorsal medial amygdala (MePD) has an adapted synaptic organization that dynamically modulates reproduction and other social behaviors in rats. Discrete gap junctions between glial cells were previously reported in the MePD neuropil. Connexins (Cx) are components of gap junctions and indicative of cellular electrical coupling. Here, we report the ultrastructural occurrence of gap junctions between neurons in the MePD and demonstrate the expression and immunofluorescent labeling of Cx36, Cx43 and Cx45 in this subcortical area of adult male rats. Few neuronal gap junctions were found in the MePD and, when identified, occurred between dendrites. On the other hand, there is a diffuse presence and distribution of punctate labelling for the tested Cxs. Puncta were visualized isolated or forming clusters in the same focal plane of cell bodies or along the MePD neuropil. The Cx36 puncta were found in neurons, Cx43 in astrocytes and Cx45 in both neurons and astrocytes. Our data indicate the presence of few gap junctions and different Cxs composition in the MePD. Because Cxs can assemble, form hemichannel units and/or serve as transcriptional regulator, it is likely that additional modulation of intercellular communication can occur besides the chemical transmission in the MePD of adult rats.


Subject(s)
Amygdala/ultrastructure , Connexins/biosynthesis , Gap Junctions/ultrastructure , Neurons/ultrastructure , Amygdala/metabolism , Animals , Connexin 43/biosynthesis , Gap Junctions/metabolism , Male , Microscopy, Electron, Transmission , Neurons/metabolism , Rats , Rats, Wistar , Gap Junction delta-2 Protein
6.
J Biomed Mater Res B Appl Biomater ; 108(5): 1879-1887, 2020 07.
Article in English | MEDLINE | ID: mdl-31809001

ABSTRACT

Magnetic Co3 O4 nanoparticles (NPs) have great potential for applications in biomedicine, as contrast enhancement agents for magnetic resonance imaging, or for drug delivery. Although these NPs are so attractive, their potential toxicity raises serious questions about decreasing cellular viability. In this context, Co3 O4 NPs were prepared via sol-gel method and encapsulated with a layer of TiO2 , a biocompatible oxide, and subjected to structural, magnetic and toxicity characterization. X-ray diffractograms of the samples demonstrate the successful synthesis of the spinel and Raman spectroscopy confirms the coating of the Co3 O4 spinel with TiO2 . The Co3 O4 cores showed a very intense superparamagnetic character; however, this behavior is strongly suppressed when the material is covered with TiO2 . According to the neutral red uptake assay, the coating of the cores with TiO2 significantly decreases the cytotoxic character of the Co3 O4 particles and, as it can be observed with the zeta (ξ) potential measurements, they form a stable colloidal dispersion at cytoplasmic pH. The effect of the thermal treatment enhances the biocompatibility even further, with no statistically significant effect on cell viability even at the highest analyzed concentration. The proposed pathway presents a successful sol-gel method for the preparation of Co3 O4 @TiO2 core-shell nanoparticles. This work opens up possibilities for future application of these materials not only for magnetic resonance imaging but also in catalysis and hyperthermia.


Subject(s)
Coated Materials, Biocompatible/chemistry , Cobalt/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Titanium/chemistry , Animals , Cell Line , Cell Membrane Permeability , Cell Survival/drug effects , Coated Materials, Biocompatible/metabolism , Cricetulus , Fibroblasts/cytology , Humans , Magnetics , Surface Properties , Titanium/metabolism
7.
Brain Res Bull ; 155: 92-101, 2020 02.
Article in English | MEDLINE | ID: mdl-31812781

ABSTRACT

The posterodorsal medial amygdala (MePD) has a high concentration of receptors for gonadal hormones, is a sexually dimorphic region and dynamically controls the reproductive behavior of both males and females. Neurotrophic factors can promote dendritic spine remodeling and change synaptic input strength in a region-specific manner. Here, we analyzed the gene and protein expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-1), polysialylated neural cell adhesion molecule (PSA-NCAM) and Ephrin-A4 in the MePD of adult males and females in diestrus, proestrus and estrus using real-time qPCR and fluorescent immunohistochemistry. The first approach showed their amplification except for Igf1 and the latter revealed that BDNF, IGF-1, PSA-NCAM and Ephrin-A4 are expressed in the MePD of the adult rats. Protein expression of these neurotrophic factors showed no differences between groups. However, proestrus females displayed a higher number of labelled puncta than males for BDNF expression and diestrus females for IGF-1 expression. In conjunction, results indicate that IGF-1 might be released rather than synthetized in the MePD, and the expression of specific neurotrophic factors varies specifically during proestrus. The dynamic modulation of BDNF and IGF-1 during this cyclic phase is coincident with synaptic changes and spine density remodeling in the MePD, the disinhibition of gonadotrophin secretion for ovulation and the display of sexual behavior.


Subject(s)
Corticomedial Nuclear Complex/physiology , Estrous Cycle , Nerve Growth Factors/physiology , Animals , Brain-Derived Neurotrophic Factor/physiology , Ephrin-A4/analysis , Ephrin-A4/physiology , Female , Gene Expression , Male , Neural Cell Adhesion Molecules/physiology , Neuronal Plasticity/physiology , Rats, Wistar , Sex Characteristics
9.
Biomed Res Int ; 2019: 2492315, 2019.
Article in English | MEDLINE | ID: mdl-31214612

ABSTRACT

Skin secretions of frogs have a high chemical complexity. They have diverse types of biomolecules, such as proteins, peptides, biogenic amines, and alkaloids. These compounds protect amphibians' skin against growth of bacteria, fungi, and protozoa and participate in defense system against attack from predators. Therewith, this work performed biochemical and biological profile of macroglands parotoid secretion from cane toad. For poison analysis, we performed molecular exclusion and reverse phase chromatography, electrophoresis, and mass spectrometry. Antimicrobial, antiplasmodial, leishmanicidal, cytotoxicity, genotoxicity, and inflammatory activity of crude and/or fractions of R. marina secretion were also evaluated. Fractionation prior to filtration from poison showed separation of low mass content (steroids and alkaloids) and high molecular mass (protein). Material below 10 kDa two steroids, marinobufagin and desacetylcinobufagin, was detected. Crude extract and fractions were active against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Plasmodium falciparum, Leishmania guyanensis, and Leishmania braziliensis. Crude extract was also active against cancer cells although it was not cytotoxic for normal cells. This extract did not show significant DNA damage but it showed an important inflammatory effect in vivo. The information obtained in this work contributes to the understanding of the constituents of R. marina secretion as well as the bioactive potential of these molecules.


Subject(s)
Anti-Bacterial Agents , Bufanolides , Parotid Gland/metabolism , Pseudomonas aeruginosa/growth & development , Skin/metabolism , Staphylococcus aureus/growth & development , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bufanolides/chemistry , Bufanolides/metabolism , Bufanolides/pharmacology , Bufo marinus
10.
Biomed Res. Int. ; 2019: 2492315, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16012

ABSTRACT

Skin secretions of frogs have a high chemical complexity. They have diverse types of biomolecules, such as proteins, peptides, biogenic amines, and alkaloids. These compounds protect amphibians’ skin against growth of bacteria, fungi, and protozoa and participate in defense system against attack from predators. Therewith, this work performed biochemical and biological profile of macroglands parotoid secretion from cane toad. For poison analysis, we performed molecular exclusion and reverse phase chromatography, electrophoresis, and mass spectrometry. Antimicrobial, antiplasmodial, leishmanicidal, cytotoxicity, genotoxicity, and inflammatory activity of crude and/or fractions of R. marina secretion were also evaluated. Fractionation prior to filtration from poison showed separation of low mass content (steroids and alkaloids) and high molecular mass (protein). Material below 10 kDa two steroids, marinobufagin and desacetylcinobufagin, was detected. Crude extract and fractions were active against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Plasmodium falciparum, Leishmania guyanensis, and Leishmania braziliensis. Crude extract was also active against cancer cells although it was not cytotoxic for normal cells. This extract did not show significant DNA damage but it showed an important inflammatory effect in vivo. The information obtained in this work contributes to the understanding of the constituents of R. marina secretion as well as the bioactive potential of these molecules.

11.
Biomed Res Int, v. 2019, 2492315, fev. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2756

ABSTRACT

Skin secretions of frogs have a high chemical complexity. They have diverse types of biomolecules, such as proteins, peptides, biogenic amines, and alkaloids. These compounds protect amphibians’ skin against growth of bacteria, fungi, and protozoa and participate in defense system against attack from predators. Therewith, this work performed biochemical and biological profile of macroglands parotoid secretion from cane toad. For poison analysis, we performed molecular exclusion and reverse phase chromatography, electrophoresis, and mass spectrometry. Antimicrobial, antiplasmodial, leishmanicidal, cytotoxicity, genotoxicity, and inflammatory activity of crude and/or fractions of R. marina secretion were also evaluated. Fractionation prior to filtration from poison showed separation of low mass content (steroids and alkaloids) and high molecular mass (protein). Material below 10 kDa two steroids, marinobufagin and desacetylcinobufagin, was detected. Crude extract and fractions were active against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Plasmodium falciparum, Leishmania guyanensis, and Leishmania braziliensis. Crude extract was also active against cancer cells although it was not cytotoxic for normal cells. This extract did not show significant DNA damage but it showed an important inflammatory effect in vivo. The information obtained in this work contributes to the understanding of the constituents of R. marina secretion as well as the bioactive potential of these molecules.

12.
Cell Mol Neurobiol ; 38(8): 1505-1516, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30302628

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo ß-oxidation. The mainly accumulated saturated fatty acids are hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in tissues and body fluids. This peroxisomal disorder occurs in at least 1 out of 20,000 births. Considering that pathophysiology of this disease is not well characterized yet, and glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated oxidative damages and inflammatory effects of vesicles containing lecithin and C26:0, as well as the protection conferred by N-acetyl-L-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) was assessed. It was verified that glial cells exposed to C26:0 presented oxidative DNA damage (measured by comet assay and endonuclease III repair enzyme), enzymatic oxidative imbalance (high catalase activity), nitrative stress [increased nitric oxide (NO) levels], inflammation [high Interleukin-1beta (IL-1ß) levels], and induced lipid peroxidation (increased isoprostane levels) compared to native glial cells without C26:0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate some damages caused by the C26:0 in glial cells. The present work yields experimental evidence that inflammation, oxidative, and nitrative stress may be induced by hexacosanoic acid, the main accumulated metabolite in X-ALD, and that antioxidants might be considered as an adjuvant therapy for this severe neurometabolic disease.


Subject(s)
Acetylcysteine/pharmacology , Chromans/pharmacology , Fatty Acids/pharmacology , Inflammation/pathology , Neuroglia/pathology , Nitrosative Stress , Oxidative Stress , Rosuvastatin Calcium/pharmacology , Animals , Antioxidants/metabolism , Catalase/metabolism , Cell Survival/drug effects , Cytoplasmic Vesicles/metabolism , DNA Damage , Interleukin-1beta/metabolism , Isoprostanes/metabolism , Neuroglia/metabolism , Neuroprotective Agents/pharmacology , Nitrates/metabolism , Nitrites/metabolism , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Rats
13.
Eur J Pharm Biopharm ; 133: 96-103, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30315863

ABSTRACT

Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115 nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1 h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3 h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.


Subject(s)
Central Nervous System/drug effects , Glycerides/chemistry , Lysosomal Storage Diseases/drug therapy , Nanoparticles/chemistry , Animals , Cell Line , Drug Delivery Systems/methods , Humans , Lysosomes/drug effects , Male , Mice , Nanotechnology/methods , Scattering, Small Angle , X-Ray Diffraction/methods
14.
Article in English | MEDLINE | ID: mdl-30249478

ABSTRACT

Mucopolysaccharidosis type II (MPS II or Hunter syndrome) is an inborn error of metabolism characterized by the accumulation of glycosaminoglycans (GAG) in lysosomes. Enzyme replacement therapy (ERT) can reduce GAG storage, ameliorate symptoms, and slow disease progression. Oxidative damages may contribute to the MPS II pathophysiology, and treatment with ERT might reduce the effects of oxidative stress. We evaluated levels of DNA damage (including oxidative damage) and chromosome damage in leukocytes of long-term-treated MPS II patients, by applying the buccal micronucleus cytome assay. We observed that, despite long-term ERT, MPS II patients had higher levels of DNA damage and higher frequencies of micronuclei and nuclear buds than did control. These genetic damages are presumably due to oxidation: we also observed increased levels of oxidized guanine species in MPS II patients. Therapy adjuvant to ERT should be considered, in order to decrease oxidative damage and cytogenetic alterations.


Subject(s)
Chromosome Aberrations , DNA Damage , Enzyme Replacement Therapy , Glycoproteins/administration & dosage , Leukocytes/pathology , Mucopolysaccharidosis II/genetics , Adolescent , Adult , Case-Control Studies , Child , Glycoproteins/deficiency , Humans , Leukocytes/drug effects , Leukocytes/enzymology , Male , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/enzymology , Mucopolysaccharidosis II/pathology , Oxidation-Reduction , Oxidative Stress , Treatment Outcome , Young Adult
15.
J Mater Chem B ; 6(30): 4920-4928, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-32255066

ABSTRACT

Inorganic nanoparticles that mimic the activity of enzymes are promising systems for biomedical applications. However, they cannot distinguish between healthy and damaged tissues, which could cause undesired effects. Natural enzymes avoid this drawback via activation triggered by specific biochemical events in the body. Inspired by this strategy, we proposed an artificial cerium-based proenzyme system that could be activated to a superoxide dismutase-like form using H2O2 as the trigger. To achieve this goal, an innovative and easy strategy to synthesize Ce(OH)3 nanoparticles as artificial proenzymes was developed using a lyotropic liquid crystal composed of phytantriol, which was essential to maintain their stability at physiological pH. The transmission electron microscopy measurements showed that the Ce(OH)3 nanoparticles were as small as 2 nm. The nanoparticles were fitted into the tiny aqueous channels of the liquid crystal matrix, which presented a Pn3m space group. X-ray absorption near edge structure measurements were used to determine the Ce(iii) fraction of the proenzyme-like nanoparticles, which was around 85%. The Ce(iii) fraction dramatically dropped to around 5% after contact with H2O2 because of the conversion of Ce(OH)3 to CeO(2-x) nanoparticles. The CeO(2-x) nanoparticles showed superoxide dismutase-like activity in contrast to the inactive Ce(OH)3 form. The proof of concept presented in this work opens up new possibilities for using nanoparticles as artificial proenzymes that are activated by a biochemical trigger in vivo.

16.
Toxicology ; 368-369: 46-57, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27565713

ABSTRACT

Cancer treatment with Doxorubicin (DOX) is limited due its dose-dependent cardiotoxicity, mainly related to the oxidative stress production. In experimental models of DOX treatment exercise can be used as a beneficial adjuvant therapy. This work aimed to investigate the effects of exercise during pregnancy on DOX-induced cardiotoxicity in cardiomyocytes of progeny, examining the possible intergenerational cardioprotective effects of maternal exercise. For this purpose pregnant rats were divided in control and exercise groups and pre-treated during gestational days. Hearts of newborns were used to obtain a culture of cardiomyocytes to be treated with DOX for analyses of cell viability, apoptosis and necrosis; ROS production; DNA damage; SOD and CAT activities; and Sirt6 protein expression. The results showed that exercise during pregnancy induced an increase in the viability of neonatal cardiomyocytes and a decrease in DOX-induced apoptotic and necrotic death which were correlated to the decrease in ROS production and an increase in antioxidant defenses. Exercise also protected neonatal cardiomyocytes from DOX-induced DNA damage, demonstrating a reduction in the oxidative DNA breaks. Likewise, exercise induced an increase in expression of Sirt6 in neonatal cardiomyocytes. Therefore, these results demonstrate for the first time that exercise performed by mothers protects the neonatal heart against DOX-induced toxicity. Our data demonstrate the intergenerational effect of exercise in cardiomyocytes of progeny, where the modulation of oxidative stress through antioxidant enzymes, and DNA integrity via Sirt6, were induced due to exercise in mothers, increasing the resistance of the neonatal heart against DOX toxicity.


Subject(s)
Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Heart/drug effects , Physical Conditioning, Animal , Animals , Animals, Newborn , Apoptosis/drug effects , Cardiotoxicity/etiology , Catalase/metabolism , Cell Survival/drug effects , DNA Damage/drug effects , Female , Heart/physiology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Pregnancy , Rats , Reactive Oxygen Species/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Superoxide Dismutase/metabolism
17.
Psychopharmacology (Berl) ; 232(19): 3623-36, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26231496

ABSTRACT

RATIONALE: Alcohol addiction causes severe problems, and its deprivation may potentiate symptoms such as anxiety. Furthermore, ethanol is a neurotoxic agent that induces degeneration and the consequences underlying alcohol-mediated brain damage remain unclear. OBJECTIVES: This study assessed the behavioral changes during acute ethanol withdrawal periods and determined the levels of DNA damage and reactive oxygen species (ROS) in multiple brain areas. METHODS: Male Wistar rats were subjected to an oral ethanol self-administration procedure with a forced diet where they were offered 8% (v/v) ethanol solution for 21 days followed by five repeated 24-h cycles alternating between ethanol withdrawal and re-exposure. Control animals received an isocaloric control diet without ethanol. Behavioral changes were analyzed on ethanol withdrawal days in the open-field (OF) and elevated plus-maze (EPM) tests within the first 6 h of ethanol deprivation. The pre-frontal cortex, hypothalamus, striatum, hippocampus, and cerebellum were dissected for alkaline and neutral comet assays and for dichlorofluorescein ROS testing. RESULTS: The repeated intermittent ethanol access enhanced solution intake and alcohol-seeking behavior. Decreased exploratory activity was observed in the OF test, and the animals stretched less in the EPM test. DNA single-strand breaks and ROS production were significantly higher in all structures evaluated in the ethanol-treated rats compared with controls. CONCLUSIONS: The animal model of repeated intermittent ethanol access induced behavioral changes in rats, and this ethanol exposure model induced an increase in DNA single-strand breaks and ROS production in all brain areas. Our results suggest that these brain damages may influence future behaviors.


Subject(s)
Alcoholism/metabolism , Brain/drug effects , Brain/metabolism , DNA Damage/drug effects , Ethanol/administration & dosage , Substance Withdrawal Syndrome/metabolism , Age Factors , Alcoholism/complications , Animals , Anxiety/etiology , Anxiety/metabolism , DNA Damage/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Self Administration , Substance Withdrawal Syndrome/etiology
18.
Int J Dev Neurosci ; 43: 8-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25765338

ABSTRACT

Toxic metabolites accumulation and oxidative stress have been associated to the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisome metabolism. Parameters of oxidative damage to proteins and lipids in X-ALD patients were already described in literature; however, DNA injuries were not studied yet. Considering that, the aims were to investigate DNA damage by comet assay in heterozygotes and symptomatic X-ALD patients, to look for associations between DNA damage and lipid peroxidation as measured by urinary 15-F2t-isoprostane; and to evaluate the in vitro effect of N-acetyl-l-cysteine (NAC), trolox (TRO) and rosuvastatin (RSV) on DNA damage in leukocytes from symptomatic patients. Symptomatic patients presented higher DNA damage levels than those found in heterozygotes and controls; heterozygotes and controls showed similar results. In order to investigate the in vitro antioxidant effect on DNA damage, whole blood cells from symptomatic patients were incubated with NAC (1 and 2.5mM), TRO (25 and 75 µM) and RSV (0.5, 2 and 5 µM) before DNA damage analysis. NAC, TRO and RSV, at all tested concentrations, were all capable to reduce DNA damage in symptomatic X-ALD patients until control levels. Finally, DNA damage correlated with urinary isoprostanes and plasmatic levels of TBA-RS and DCFH-DA, allowing to hypothesize that DNA damage might be induced by lipid peroxidation in symptomatic patients. The present work yields experimental evidence that NAC, TRO and RSV reduce the in vitro DNA injury in symptomatic X-ALD patients, what may suggest that the administration of these antioxidants might be considered as an adjuvant therapy for X-ALD.


Subject(s)
Adrenoleukodystrophy/blood , Antioxidants/therapeutic use , DNA Damage/drug effects , Leukocytes/pathology , Adult , Dose-Response Relationship, Drug , Fatty Acids/metabolism , Female , Humans , Leukocytes/drug effects , Lipid Peroxidation/drug effects , Male , Oxidative Stress , Thiobarbituric Acid Reactive Substances/metabolism
19.
Biochim Biophys Acta ; 1852(5): 1012-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25701642

ABSTRACT

Mucopolysaccharidosis type IVA (MPS IVA) is an inborn error of glycosaminoglycan (GAG) catabolism due to the deficient activity of N-acetylgalactosamine-6-sulfate sulfatase that leads to accumulation of the keratan sulfate and chondroitin 6-sulfate in body fluids and in lysosomes. The pathophysiology of this lysosomal storage disorder is not completely understood. The aim of this study was to investigate oxidative stress parameters, pro-inflammatory cytokine and GAG levels in MPS IVA patients. We analyzed urine and blood samples from patients under ERT (n=17) and healthy age-matched controls (n=10-15). Patients presented a reduction of antioxidant defense levels, assessed by a decrease in glutathione content and by an increase in superoxide dismutase activity in erythrocytes. Concerning lipid and protein damage, it was verified increased urine isoprostanes and di-tyrosine levels and decreased plasma sulfhydryl groups in MPS IVA patients compared to controls. MPS IVA patients showed higher DNA damage than control group and this damage had an oxidative origin in both pyrimidine and purine bases. Interleukin 6 was increased in patients and presented an inverse correlation with GSH levels, showing a possible link between inflammation and oxidative stress in MPS IVA disease. The data presented suggest that pro-inflammatory and pro-oxidant states occur in MPS IVA patients even under ERT. Taking these results into account, supplementation of antioxidants in combination with ERT can be a tentative therapeutic approach with the purpose of improving the patient's quality of life. To the best of our knowledge, this is the first study relating MPS IVA patients with oxidative stress.


Subject(s)
Chondroitinsulfatases/therapeutic use , Enzyme Replacement Therapy/methods , Inflammation/drug therapy , Mucopolysaccharidosis IV/drug therapy , Oxidative Stress/drug effects , 8-Hydroxy-2'-Deoxyguanosine , Adolescent , Adult , Blood Proteins/analysis , Child , Creatinine/urine , Cytokines/blood , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Glutathione/blood , Glycosaminoglycans/urine , Humans , Inflammation/blood , Inflammation/urine , Isoprostanes/urine , Male , Mucopolysaccharidosis IV/blood , Mucopolysaccharidosis IV/urine , Peroxidase/blood , Superoxide Dismutase/blood , Treatment Outcome , Tyrosine/analogs & derivatives , Tyrosine/urine , Young Adult
20.
Metab Brain Dis ; 30(4): 925-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25600689

ABSTRACT

The pathogenesis and the progression of phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, have been associated with oxidative damage. Moreover, it has been increasingly postulated the antioxidant properties of L-Carnitine (LC). The aim of this study was to verify the effect of LC on Phe-induced DNA damage. The in vitro effect of different concentrations of LC (15, 30, 120 and 150 µM) on DNA damage-induced by high phenylalanine levels (1000 and 2500 µM) was examined in white blood cells from normal individuals using the comet assay. Urinary 8-hydroxydeoguanosine (8-OHdG) levels, a biomarker of oxidative DNA damage, and plasmatic sulfhydryl content were measured in eight patients with classical PKU, under therapy with protein restriction and supplemented with a special formula containing LC, and in controls individuals. Both in vitro tested Phe concentrations (1000 and 2500 µM) have resulted in DNA damage index significantly higher than control group. The in vitro co-treatment with Phe and LC reduced significantly DNA damage index when compared to Phe group. The urinary excretion of 8-OHdG and plasmatic sulfhydryl content presented similar levels in both groups analyzed (controls and treated PKU patients). In treated PKU patients, urinary 8-OHdG levels were positively correlated with blood Phe levels and negatively correlated with blood LC concentration and plasmatic sulfhydryl content. The present work yields experimental evidence that LC can reduce the in vitro DNA injury induced by high concentrations of phenylalanine, as well as, allow to hypothesize that LC protect against DNA damage in patients with PKU.


Subject(s)
Carnitine/pharmacology , DNA Damage/drug effects , Dietary Supplements , Phenylalanine/toxicity , Adolescent , Carnitine/therapeutic use , DNA Damage/physiology , Female , Humans , Male , Phenylketonurias/blood , Phenylketonurias/drug therapy , Phenylketonurias/urine , Protective Agents/pharmacology , Protective Agents/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...