Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(8): e29046, 2023 08.
Article in English | MEDLINE | ID: mdl-37605969

ABSTRACT

Rabies is a fatal viral zoonosis caused by rabies virus (RABV). RABV infects the central nervous system and triggers acute encephalomyelitis in both humans and animals. Endemic in the Brazilian Northeast region, RABV emergence in distinct wildlife species has been identified as a source of human rabies infection and as such, constitutes a public health concern. Here, we performed post-mortem RABV analyses of 144 encephalic tissues from bats sampled from January to July 2022, belonging to 15 different species. We identified phylogenetically distinct RABV from Phyllostomidae and Molossidae bats circulating in Northeastern Brazil. Phylogenetic clustering revealed the close evolutionary relationship between RABV viruses circulating in bats and variants hosted in white-tufted marmosets, commonly captured to be kept as pets and linked to human rabies cases and deaths in Brazil. Our findings underline the urgent need to implement a phylogenetic-scale epidemiological surveillance platform to track multiple RABV variants which may pose a threat to both humans and animals.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Humans , Callithrix , Rabies virus/genetics , Rabies/epidemiology , Rabies/veterinary , Brazil/epidemiology , Phylogeny
2.
J Med Entomol ; 60(1): 213-217, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36269279

ABSTRACT

The bacterial genus Borrelia comprises vector-borne spirochetes that have been classified into three major groups: the relapsing fever group (RFG), the Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner sensu lato group (Bbsl), and the reptile-monotreme group (RMG). All three groups have been associated mainly with ticks and wild animals, especially rodents, birds, and reptiles. Here, we searched for Borrelia infection among 99 vampire bats [Desmodus rotundus (É. Geoffroy)] (Chiroptera: Phyllostomidae) from the Brazilian semiarid region. Through molecular investigation of bat internal organs, haplotypes of a potentially novel Borrelia organism were detected in 5% (5/99) of the bats. Borrelia DNA was detected in the liver, blood, spleen, kidney and brain, suggesting a systemic infection. Phylogenetic analyses inferred from partial sequences of the borrelial rrs and flaB genes indicated that the vampire bat-associated Borrelia sp. of this study form a monophyletic group with a newly reported Borrelia associated with a Colombia bat, distinct from the three main currently recognized groups of Borrelia spp., Bbsl, RFG, and RMG. These novel bat-associated Borrelia spp. from South America might have arisen through an independent event along the borrelial evolutionary history, since previous molecular reports of Borrelia organisms in bats or bat-associated ticks from Africa, Europe, and North America were all classified in the RFG.


Subject(s)
Argasidae , Borrelia , Chiroptera , Relapsing Fever , Animals , Argasidae/microbiology , Borrelia/genetics , Borrelia/isolation & purification , Brazil , Chiroptera/microbiology , Genotype , Phylogeny , Relapsing Fever/genetics , Relapsing Fever/microbiology , Evolution, Molecular
3.
Exp Appl Acarol ; 86(4): 567-581, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35305191

ABSTRACT

In Brazil, 19 species of the genus Ornithodoros (Acari: Argasidae) have been reported. The medical and veterinary importance of Ornithodoros ticks has increased substantially in recent decades, with the discovery of various relapsing fever Borrelia infecting Ornithodoros ticks. Herein, argasid ticks were collected during 2019-2020 from caves, abandoned nests and homes in various regions of Ceará State, Brazilian semiarid-Caatinga biome. In total, 289 ticks were collected and identified into five species: Ornithodoros cavernicolous (176 specimens), Ornithodoros fonsecai (81), Ornithodoros mimon (12), Ornithodoros rietcorreai (4), and a fifth species provisionally retained as Ornithodoros sp. Ubajara. Tick identifications were corroborated by a phylogenetic analysis inferred using the 16S rRNA gene. To extend the molecular characterization, DNA samples were tested by an additional PCR assay targeting the nuclear Histone 3 (H3) gene. Because there were no H3 sequences of argasids in GenBank, we extended this PCR assay for additional Ornithodoros species, available in our laboratory. In total, 15 partial sequences of the H3 gene were generated for 10 Ornithodoros species, showing 0% intraspecific polymorphism, and 1.5-11.6% interspecific polymorphism. Phylogenetic analyses inferred segregated Ornithodoros sp. Ubajara as a potential novel species. Our results also highlight the potential of the H3 gene for deeper phylogenetic analyses of argasids. The present study provides new data for argasid ticks of the genus Ornithodoros in the Caatinga biome. Because some of these tick species are human-biting ticks, active surveillance for the incidence of human infection due to Ornithodoros-borne agents is imperative in the Caatinga biome.


Subject(s)
Acari , Argasidae , Ornithodoros , Animals , Argasidae/genetics , Brazil/epidemiology , Ecosystem , Histones/genetics , Ornithodoros/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...