Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 13: 963736, 2022.
Article in English | MEDLINE | ID: mdl-36324671

ABSTRACT

Acridine derivatives have been found with anticancer and antinociceptive activities. Herein, we aimed to evaluate the toxicological, antitumor, and antinociceptive actions of N'-(6-chloro-2-methoxyacridin-9-yl)-2-cyanoacetohydrazide (ACS-AZ), a 9-aminoacridine derivative with antimalarial activity. The toxicity was assessed by acute toxicity and micronucleus tests in mice. The in vivo antitumor effect of ACS-AZ (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.) was determined using the Ehrlich tumor model, and toxicity. The antinociceptive efficacy of the compound (50 mg/kg, i.p.) was investigated using formalin and hot plate assays in mice. The role of the opioid system was also investigated. In the acute toxicity test, the LD50 (lethal dose 50%) value was 500 mg/kg (i.p.), and no detectable genotoxic effect was observed. After a 7-day treatment, ACS-AZ significantly (p < 0.05) reduced tumor cell viability and peritumoral microvessels density, suggesting antiangiogenic action. In addition, ACS-AZ reduced (p < 0.05) IL-1ß and CCL-2 levels, which may be related to the antiangiogenic effect, while increasing (p < 0.05) TNF-α and IL-4 levels, which are related to its direct cytotoxicity. ACS-AZ also decreased (p < 0.05) oxidative stress and nitric oxide (NO) levels, both of which are crucial mediators in cancer known for their angiogenic action. Moreover, weak toxicological effects were recorded after a 7-day treatment (biochemical, hematological, and histological parameters). Concerning antinociceptive activity, ACS-AZ was effective on hotplate and formalin (early and late phases) tests (p < 0.05), characteristic of analgesic agents with central action. Through pretreatment with the non-selective (naloxone) and µ1-selective (naloxonazine) opioid antagonists, we observed that the antinociceptive effect of ACS-AZ is mediated mainly by µ1-opioid receptors (p < 0.05). In conclusion, ACS-AZ has low toxicity and antitumoral activity related to cytotoxic and antiangiogenic actions that involve the modulation of reactive oxygen species, NO, and cytokine levels, in addition to antinociceptive properties involving the opioid system.

2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145320

ABSTRACT

In this study, we report the synthesis of twenty new acridine-thiosemicarbazone derivatives and their antiproliferative activities. Mechanisms of action such as the inhibition of topoisomerase IIα and the interaction with DNA have been studied for some of the most active derivatives by means of both in silico and in vitro methods, and evaluations of the non-clinical toxicities (in vivo) in mice. In general, the compounds showed greater cytotoxicity against B16-F10 cells, with the highest potency for DL-08 (IC50 = 14.79 µM). Derivatives DL-01 (77%), DL-07 (74%) and DL-08 (79%) showed interesting inhibition of topoisomerase IIα when compared to amsacrine, at 100 µM. In silico studies proposed the way of bonding of these compounds and a possible stereoelectronic reason for the absence of enzymatic activity for CL-07 and DL-06. Interactions with DNA presented different spectroscopic effects and indicate that the compound CL-07 has higher affinity for DNA (Kb = 4.75 × 104 M-1; Ksv = 2.6 × 103 M-1). In addition, compounds selected for non-clinical toxicity testing did not show serious signs of toxicity at the dose of 2000 mg/kg in mice; cytotoxic tests performed on leukemic cells (K-562) and its resistant form (K-562 Lucena 1) identified moderate potency for DL-01 and DL-08, with IC50 between 11.45 and 17.32 µM.

3.
Oxid Med Cell Longev ; 2020: 5642029, 2020.
Article in English | MEDLINE | ID: mdl-33299526

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Antioxidants/metabolism , Motor Neurons/pathology , Oxidative Stress/physiology , Secondary Metabolism/physiology , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Disease Models, Animal , Humans , Motor Neurons/metabolism
4.
Eur J Pharm Sci ; 155: 105547, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32927070

ABSTRACT

The N-acylhydrazone subunit is considered a privileged structure in medicinal chemistry for its importance in pharmaceutical research. Also, alternative methods to deliver these molecules have a great pharmaceutical interest. Therefore, the objective of this work was to encapsulate JR19, an N-acyl hydrazone subunit, into chitosan films and evaluate several properties relevant for transdermal delivery, including biocompatibility using in vitro tests. CHI + JR19 film demonstrates greater strength, flexibility, water absorption capacity, low contact angle and higher surface roughness when compared to CHI. Agar diffusion and 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay show the absence of cytotoxicity and the higher cell viability for CHI + JR19 films. Therefore, the addition of JR19 in the system positively influenced mechanical properties and granted better compatibility with biological environments, showing the potential to treat skin inflammation.


Subject(s)
Chitosan , Pharmaceutical Preparations , Administration, Cutaneous , Cell Survival , Chemistry, Pharmaceutical , Surface Properties
5.
Curr Pharm Des ; 26(33): 4112-4150, 2020.
Article in English | MEDLINE | ID: mdl-32611290

ABSTRACT

Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.


Subject(s)
Bioprospecting , Leishmania , Neglected Diseases , Parasitic Diseases , Animals , Humans , Neglected Diseases/drug therapy , Nitrogen , Parasitic Diseases/drug therapy
6.
Molecules ; 25(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861795

ABSTRACT

Tumor cells have specific features, including angiogenesis induction, cell cycle dysregulation, and immune destruction evasion. By inducing a T helper type 2 (Th2) immune response, tumor cells may favor immune tolerance within the tumor, which allows progression of cancer growth. Drugs with potential antitumor activity are the spiro-acridines, which is a promising new class of acridine compounds. Herein, the novel spiro-acridine (E)-5'-oxo-1'-((3,4,5-trimethoxybenzylidene)amino)-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-17) was synthesized and tested for antitumor effects. Toxicity evaluation was performed in mice after acute treatment (2000 mg/kg, intraperitoneally, i.p.). The Ehrlich ascites carcinoma model was used to investigate the antitumor activity of AMTAC-17 (12.5, 25, or 50 mg/kg, i.p.) after seven days of treatment. Effects on the cell cycle, angiogenesis, and inflammatory responses were investigated. LD50 (lethal dose 50%) was estimated to be higher than 5000 mg/kg. AMTAC-17 reduced the Ehrlich tumor's total viable cancer cells count and peritumoral micro-vessels density, and induced an increase in the sub-G1 peak. Additionally, there was an increase of Th1 cytokine profile levels (IL-1ß, TNF-α, and IL-12). In conclusion, the spiro-acridine compound AMTAC-17 presents low toxicity, and its in vivo antitumor effect involves modulation of the immune system to a cytotoxic Th1 profile and a reduction of tumor angiogenesis.


Subject(s)
Acridines , Angiogenesis Inhibitors , Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Gene Expression Regulation, Neoplastic/drug effects , Th1 Cells/immunology , Up-Regulation/drug effects , Acridines/chemistry , Acridines/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/immunology , Carcinoma, Ehrlich Tumor/pathology , Gene Expression Regulation, Neoplastic/immunology , Mice , Th1 Cells/pathology , Up-Regulation/immunology
7.
J Photochem Photobiol B ; 189: 165-175, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30366283

ABSTRACT

Acridines are considered an important class of compounds due to their wide variety of biological activities. In this work, we synthesized four acridine derivatives (1-4) and evaluated their biological activity against the Plasmodium falciparum W2 line, as well as studied the interaction with ctDNA and HSA using spectroscopic techniques and molecular docking. The acridine derivative 2 (IC50 = 0.90 ±â€¯0.08 µM) was more effective against P. falciparum than primaquine (IC50 = 1.70 ±â€¯0.10 µM) and similar to amsacrine (IC50 = 0.80 ±â€¯0.10 µM). In the fluorescence and UV-vis assays, it was verified that the acridine derivatives interact with ctDNA and HSA leading to a non-fluorescent supramolecular complex formation. The non-covalent binding constants ranged from 2.09 to 7.76 × 103 M-1, indicating moderate interaction with ctDNA. Through experiments with KI, fluorescence contact energy transfer and competition assays were possible to characterize the main non-covalent binding mode of the acridines evaluated with ctDNA as intercalation. The binding constants obtained showed a high linear correlation with the IC50 values against the antimalarial activity, suggesting that DNA may be the main biological target of these molecules. Finally, HSA interaction studies were performed and all evaluated compounds bind to the site II of the protein. The less active compounds (1 and 3) presented the highest affinity to HSA, indicating that the interaction with carrier protein can affect the (bio)availability of these compounds to the biological target.


Subject(s)
Acridines/chemical synthesis , Antimalarials/pharmacology , DNA/metabolism , Serum Albumin, Human/metabolism , Acridines/pharmacology , Binding Sites , Humans , Intercalating Agents/pharmacology , Protein Binding , Structure-Activity Relationship
8.
Comb Chem High Throughput Screen ; 20(8): 713-718, 2017.
Article in English | MEDLINE | ID: mdl-28738767

ABSTRACT

AIM AND OBJECTIVE: Cancer has become one of the leading causes of morbidity and mortality worldwide. Limitations associated with existing agents increase the need to develop more effective anticancer drugs to improve the therapeutic arsenal available. The aim of this study was to synthesize and evaluate the antiproliferative effects of three new thiazacridine derivatives. MATERIAL AND METHODS: Using a three steps synthesis reaction, three novel thiazacridine derivatives were obtained and characterized: (Z)-5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-4-thioxo-thiazolidin- 2-one (LPSF/AC-99), (Z)-5-acridin-9-ylmethylene-3-(4-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-119) and (Z)-5-acridin-9-ylmethylene-3-(3-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-129). Toxicity and selectivity assays were performed by colorimetric assay. Then, changes in cell cycle and cell death induction mechanisms were assessed by flow cytometry. RESULTS: All compounds exhibited cytotoxicity to Raji (Burkitt's lymphoma) and Jurkat (acute T cell leukemia) cells, where LPSF/AC-119 showed best IC50 values (0.6 and 1.53 µ M, respectively). LPSF/AC-129 was the only cytotoxic compound in glioblastoma cell line NG97 (IC50 = 55.77 µ M). None of the compounds were toxic to normal human cells and induced neoplastic cell death primarily by apoptosis. CONCLUSION: All derivatives were more cytotoxic to hematopoietic neoplastic cells when compared to solid tumor derived cells. All three compounds are promising for in vivo and combination therapy studies against cancer.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Hematologic Neoplasms/drug therapy , Acridines/chemical synthesis , Acridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hematologic Neoplasms/pathology , Humans , Structure-Activity Relationship
9.
Curr Pharm Des ; 22(21): 3135-63, 2016 05 30.
Article in English | MEDLINE | ID: mdl-26907943

ABSTRACT

BACKGROUND: Diseases perceived as neglected tropical infections are generally caused by parasites which reach poor, underserved populations (primarily infrastructure), cause serious damage to health, and many deaths. AIDS and tuberculosis, (although not classified as neglected by WHO), are discriminated against infections which cause great social damage. The drugs currently used to treat these diseases do not have the desired effectiveness, enable the emergence of resistant strains, and in most cases are difficult to obtain. Few pharmaceutical companies are investing in new drug research for neglected diseases, for lack of financial return. This review reports the major neglected diseases, AIDS, tuberculosis, their targets, and research on multi-target drugs. METHODS: The studies for new drugs against these infections involve in silico methods, synthesis, structural determinations, analytical analysis and other experimental assays. RESULTS: A new single compound, forecasting possible pharmacodynamic and pharmacokinetic interactions becomes a simpler process; it is also believed that these drugs are safer and more efficient, since they act with synergism on different targets. It occurs but the emergence of new resistant strains and side effects. CONCLUSION: Multi-target drugs represent a new alternative to find new lead compounds. A ligand that targets two or more receivers may be seen as a potential drug, combating infection by different routes.


Subject(s)
Molecular Targeted Therapy , Neglected Diseases/drug therapy , Pharmaceutical Preparations , Drug Discovery , Humans , Ligands , Quantitative Structure-Activity Relationship
10.
Acta Pharm ; 64(2): 233-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24914723

ABSTRACT

Seven new compounds have been synthetized in satisfactory yields (51-78 %) through the treatment of mesoionic 1,3-thiazolium-5-thiolate (4a-d) and 1,3,4-thiadiazolium- 5-thiolate (10a,b) with chloroacetic acid or methyl iodide: 1,3,4-thiadiazolium-5-methylthio- (11) and 5-thioacetate (12). The structure of the title compounds was elucidated by elemental analysis, IR, (1)H and (13)C NMR spectroscopy. The newly synthesized compounds 5a, 6a, 11 and 12 were evaluated for their ex vivo spasmolytic potential on four isolated smooth muscles (rat aorta and uterus, guinea pig ileum and trachea) and compared with scopolamine. Some of the compounds exhibited potent spasmolytic activity equal to or stronger than scopolamine.


Subject(s)
Parasympatholytics/chemistry , Parasympatholytics/chemical synthesis , Animals , Aorta/drug effects , Female , Guinea Pigs , Ileum/drug effects , Male , Muscle, Smooth/drug effects , Parasympatholytics/pharmacology , Rats , Rats, Wistar , Scopolamine/pharmacology , Structure-Activity Relationship , Trachea/drug effects , Uterus/drug effects
11.
Int J Mol Sci ; 14(1): 1293-309, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23306152

ABSTRACT

The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 µg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO(2) and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2(cv) of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Coumarins/pharmacology , Acetylation , Alkylation , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus/classification , Computer Simulation , Coumarins/chemical synthesis , Coumarins/chemistry , Least-Squares Analysis , Microbial Sensitivity Tests , Models, Chemical , Models, Molecular , Molecular Structure , Nitrates/chemistry , Principal Component Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...