Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 279, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39061004

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Klebsiella pneumoniae , Lipopolysaccharides , Promoter Regions, Genetic , Repressor Proteins , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Lipopolysaccharides/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Iron/metabolism , Binding Sites , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism
2.
Molecules ; 28(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110574

ABSTRACT

The human immunodeficiency virus (HIV) produces the pathologic basis of acquired immunodeficiency syndrome (AIDS). An increase in the viral load in the body leads to a decline in the number of T lymphocytes, compromising the patient's immune system. Some opportunistic diseases may result, such as tuberculosis (TB), which is the most common in seropositive patients. Long-term treatment is required for HIV-TB coinfection, and cocktails of drugs for both diseases are used concomitantly. The most challenging aspects of treatment are the occurrence of drug interactions, overlapping toxicity, no adherence to treatment and cases of resistance. Recent approaches have involved using molecules that can act synergistically on two or more distinct targets. The development of multitarget molecules could overcome the disadvantages of the therapies used to treat HIV-TB coinfection. This report is the first review on using molecules with activities against HIV and Mycobacterium tuberculosis (MTB) for molecular hybridization and multitarget strategies. Here, we discuss the importance and development of multiple targets as a means of improving adherence to therapy in cases of the coexistence of these pathologies. In this context, several studies on the development of structural entities to treat HIV-TB simultaneously are discussed.


Subject(s)
Coinfection , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , HIV , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Coinfection/drug therapy , Coinfection/epidemiology , Tuberculosis/complications , Tuberculosis/drug therapy , Tuberculosis/microbiology , HIV Infections/complications , HIV Infections/drug therapy
3.
Molecules ; 27(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35164014

ABSTRACT

Tyrosine kinase enzymes are among the primary molecular targets for the treatment of some human neoplasms, such as those in lung cancer and chronic myeloid leukemia. Mutations in the enzyme domain can cause resistance and new inhibitors capable of circumventing these mutations are highly desired. The objective of this work was to synthesize and evaluate the antiproliferative ability of ten new analogs that contain isatins and the phenylamino-pyrimidine pyridine (PAPP) skeleton, the main pharmacophore group of imatinib. The 1,2,3-triazole core was used as a spacer in the derivatives through a click chemistry reaction and gave good yields. All the analogs were tested against A549 and K562 cells, lung cancer and chronic myeloid leukemia (CML) cell lines, respectively. In A549 cells, the 3,3-difluorinated compound (3a), the 5-chloro-3,3-difluorinated compound (3c) and the 5-bromo-3,3-difluorinated compound (3d) showed IC50 values of 7.2, 6.4, and 7.3 µM, respectively, and were all more potent than imatinib (IC50 of 65.4 µM). In K562 cells, the 3,3-difluoro-5-methylated compound (3b) decreased cell viability to 57.5% and, at 10 µM, showed an IC50 value of 35.8 µM (imatinib, IC50 = 0.08 µM). The results suggest that 3a, 3c, and 3d can be used as prototypes for the development of more potent and selective derivatives against lung cancer.


Subject(s)
Cell Proliferation/drug effects , Imatinib Mesylate/pharmacology , Neoplasms/pathology , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Imatinib Mesylate/analogs & derivatives , Imatinib Mesylate/therapeutic use , K562 Cells , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
4.
Environ Sci Pollut Res Int ; 28(31): 42093-42106, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33791966

ABSTRACT

Water contamination is a common problem, especially considering dyes and drugs disposal. A possible and effective treatment method to remove these organic pollutants from water is photocatalytic reaction. This study aimed to improve the photocatalytic properties of TiO2 using iron oxides (Ti/Fe composite). Different magnetic photocatalysts based on commercial TiO2 were obtained with 30, 50, and 80% (wt./wt.) of TiO2 supported on maghemite. X-ray diffraction with Rietveld refinement confirms the presence of γ-Fe2O3, α-Fe2O3, anatase, and rutile, as well as the relative percentages of the phases present in each photocatalyst. The magnetic properties were certified by VSM and sedimentation kinetics in the presence of a magnetic field. Besides their magnetic properties, UV-vis DRS shows that the obtained photocatalysts presented lower bandgap values when compared with TiO2. These factors allowed the materials to absorb radiation in the visible-light region and the separation from the reaction medium by the application of magnetic field. It was observed an enhancement of photodegradation reaction of methylene blue (MB) and paracetamol (PC). For example, when the content of TiO2 increased from 30 to 80% (wt./wt.), the efficiency increased from 58 to 99% (for MB) and 39 for 80% (for PC) under UV (λ = 254 nm). The reactions carried out with solar radiation showed 56 to 95% efficiency to discolor MB. In addition, the results of sedimentation kinetics and characterization confirmed the goals of the synthesis.


Subject(s)
Methylene Blue , Sunlight , Acetaminophen , Catalysis , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL