Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(3): 101467, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471503

ABSTRACT

Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.


Subject(s)
Viral Vaccines , Animals , Chlorocebus aethiops , T-Lymphocytes , Antibody Formation , Antigen-Presenting Cells , Virus Replication
2.
PLoS One ; 8(9): e74154, 2013.
Article in English | MEDLINE | ID: mdl-24040194

ABSTRACT

The evolutionary trade-off between tissue growth and mature function restricts the post natal development of polar birds. The present study uses an original integrative approach as it includes gene expression, plus biochemical and physiological analysis to investigate how Adélie penguin chicks achieve a rapid growth despite the energetic constraints linked to the cold and the very short breeding season in Antarctica. In pectoralis muscle, the main thermogenic tissue in birds, our data show that the transition from ectothermy to endothermy on Day 15 post- hatching is associated with substantial and coordinated changes in the transcription of key genes. While the early activation of genes controlling cell growth and differentiation (avGHR, avIGF-1R, T3Rß) is rapidly down-regulated after hatching, the global increase in the relative expression of genes involved in thermoregulation (avUCP, avANT, avLPL) and transcriptional regulation (avPGC1α, avT3Rß) underlie the muscular acquisition of oxidative metabolism. Adélie chicks only become real endotherms at 15 days of age with the development of an oxidative muscle phenotype and the ability to shiver efficiently. The persistent muscular expression of IGF-1 throughout growth probably acts as a local mediator to adjust muscle size and its oxidative capacity to anticipate the new physiological demands of future Dives in cold water. The up-regulation of T3Rß mRNA levels suggests that circulating T3 may play an important role in the late maturation of skeletal muscle by reinforcing, at least in part, the paracrine action of IGF-1. From day 30, the metabolic shift from mixed substrate to lipid metabolism, with the markedly increased mRNA levels of muscle avLPL, avANT and avUCP, suggests the late development of a fatty acid-enhanced muscle non-shivering thermogenesis mechanism. This molecular control is the key to this finely-tuned strategy by which the Adélie penguin chick successfully heads for the sea on schedule.


Subject(s)
Body Temperature Regulation/genetics , Gene Expression Regulation, Developmental , Metabolic Networks and Pathways/genetics , Pectoralis Muscles/metabolism , Spheniscidae/genetics , Animals , Animals, Newborn , Antarctic Regions , Cold Temperature , Gene Expression Profiling , Paracrine Communication/genetics , Pectoralis Muscles/growth & development , Spheniscidae/growth & development , Spheniscidae/metabolism
3.
Am J Physiol Regul Integr Comp Physiol ; 295(5): R1671-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18799630

ABSTRACT

Rapid growth is of crucial importance for Adélie penguin chicks reared during the short Antarctic summer. It partly depends on the rapid ontogenesis of fat stores that are virtually null at hatching but then develop considerably (x40) within a month to constitute both an isolative layer against cold and an energy store to fuel thermogenic and growth processes. The present study was aimed at identifying by RT-PCR the major transcriptional events that chronologically underlie the morphological transformation of adipocyte precursors into mature adipocytes from hatching to 30 days of age. The peak expression of GATA binding protein 3, a marker of preadipocytes, at day 7 posthatch indicates a key proliferation step, possibly in relation to the expression of C/EBPalpha (C/EBPalpha). High plasma total 3,5,3'-triiodo-l-thyronine (T(3)) levels and high levels of growth hormone receptor transcripts at hatching suggested that growth hormone and T(3) play early activating roles to favor proliferation of preadipocyte precursors. Differentiation and growth of preadipocytes may occur around day 15 in connection with increased abundance of transcripts encoding IGF-1, proliferator-activated receptor-gamma, and C/EBPbeta, gradually leading to functional maturation of metabolic features of adipocytes including lipid uptake and storage (lipoprotein lipase, fatty-acid synthase) and late endocrine functions (adiponectin) by day 30. Present results show a close correlation between adipose tissue development and chick biology and a difference in the scheduled expression of regulatory factors controlling adipogenesis compared with in vitro studies using cell lines emphasizing the importance of in vivo approaches.


Subject(s)
Adipose Tissue, White/growth & development , Spheniscidae/growth & development , Adipocytes/physiology , Adipose Tissue, White/physiology , Aging/physiology , Animals , Antarctic Regions , Body Temperature Regulation/physiology , Body Weight/physiology , Cell Differentiation/physiology , DNA Primers , GATA Transcription Factors/biosynthesis , GATA Transcription Factors/genetics , Gene Expression Profiling , Organ Size/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Triiodothyronine/blood
SELECTION OF CITATIONS
SEARCH DETAIL