Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38106055

ABSTRACT

Mutations in the DMD gene lead to Duchenne muscular dystrophy, a severe X-linked neuromuscular disorder that manifests itself as young boys acquire motor functions. DMD is typically diagnosed at 2 to 4 years of age, but the absence of dystrophin negatively impacts muscle structure and function before overt symptoms appear in patients, which poses a serious challenge in the optimization of standards of care. In this report, we investigated the early consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Here, dystrophin deficiency was linked to marked dysregulations of cell junction protein families involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.

2.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118405

ABSTRACT

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Subject(s)
Antineoplastic Agents , Rhabdomyosarcoma , Adult , Humans , Child , Neoplasm Recurrence, Local/drug therapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/pathology , Cell Death
3.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: mdl-36552862

ABSTRACT

Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from which SCAPs are derived. We characterized stem cell niches that correspond to a minority population of cells expressing Mesenchymal stromal/Stem Cell (CD90, CD105, CD146) and stemness (SSEA4 and CD49f) markers as well as endothelial cell markers (VWF, CD31). Based on the colocalization of TKS5 and cortactin markers, we detected migration-associated organelles, podosomes-like structures, in specific regions and, for the first time, in association with stem cell niches in normal tissue. From six healthy teenager volunteers, each with two teeth, we derived twelve cell banks, isolated and amplified under 21 or 3% O2. We confirmed a proliferative advantage of all banks when cultured under 3% versus 21% O2. Interestingly, telomerase activity was similar to that of the highly proliferative hiPSC cell line, but unrelated to O2 concentration. Finally, SCAPs embedded in a thixotropic hydrogel and implanted subcutaneously in immunodeficient mice were protected from cell death with a slightly greater advantage for cells preconditioned at 3% O2.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Animals , Mice , Cells, Cultured , Cell Differentiation , Oxygen/metabolism
4.
PLoS One ; 17(11): e0271847, 2022.
Article in English | MEDLINE | ID: mdl-36399439

ABSTRACT

Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach-weighted gene co-expression network analysis (WGCNA)-to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as arginine, histidine, cobalamin, or fatty acid metabolism as well as bacteriophage function, molecular chaperones, stress response, or SOS response. Some genes appeared to be associated with mechanisms of protection against oxidative stress and could be essential for F. prausnitzii's adaptation and survival under anaerobic laboratory conditions. Hub and bottleneck genes were identified by analyses of intramodular connectivity and betweenness, respectively; this highlighted the high connectivity of genes located on mobile genetic elements, which could promote the genetic evolution of F. prausnitzii within its ecological niche. This study provides the first exploration of the complex regulatory networks in F. prausnitzii, and all of the "omics" data are available online for exploration through a graphical interface at https://shiny.migale.inrae.fr/app/faeprau.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Humans , Faecalibacterium prausnitzii/genetics , Symbiosis , Gastrointestinal Microbiome/genetics , Anti-Inflammatory Agents
5.
Elife ; 112022 09 27.
Article in English | MEDLINE | ID: mdl-36164827

ABSTRACT

Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-ßgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Myoblasts , Animals , Calcium/metabolism , Dystrophin/genetics , Fatty Acids/metabolism , Humans , Leukotrienes/metabolism , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Myoblasts/pathology
6.
J Cachexia Sarcopenia Muscle ; 12(1): 209-232, 2021 02.
Article in English | MEDLINE | ID: mdl-33586340

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be more efficient at halting disease progression. In the meantime, the precise moment at which disease phenotypes arise-even asymptomatically-is still unknown. Thus, there is a critical need to better define DMD onset as well as its first manifestations, which could help identify early disease biomarkers and novel therapeutic targets. METHODS: We have used both human tissue-derived myoblasts and human induced pluripotent stem cells (hiPSCs) from DMD patients to model skeletal myogenesis and compared their differentiation dynamics with that of healthy control cells by a comprehensive multi-omic analysis at seven time points. Results were strengthened with the analysis of isogenic CRISPR-edited human embryonic stem cells and through comparisons against published transcriptomic and proteomic datasets from human DMD muscles. The study was completed with DMD knockdown/rescue experiments in hiPSC-derived skeletal muscle progenitor cells and adenosine triphosphate measurement in hiPSC-derived myotubes. RESULTS: Transcriptome and miRnome comparisons combined with protein analyses demonstrated that hiPSC differentiation (i) leads to embryonic/foetal myotubes that mimic described DMD phenotypes at the differentiation endpoint and (ii) homogeneously and robustly recapitulates key developmental steps-mesoderm, somite, and skeletal muscle. Starting at the somite stage, DMD dysregulations concerned almost 10% of the transcriptome. These include mitochondrial genes whose dysregulations escalate during differentiation. We also describe fibrosis as an intrinsic feature of DMD skeletal muscle cells that begins early during myogenesis. All the omics data are available online for exploration through a graphical interface at https://muscle-dmd.omics.ovh/. CONCLUSIONS: Our data argue for an early developmental manifestation of DMD whose onset is triggered before the entry into the skeletal muscle compartment, data leading to a necessary reconsideration of dystrophin roles during muscle development. This hiPSC model of skeletal muscle differentiation offers the possibility to explore these functions as well as find earlier DMD biomarkers and therapeutic targets.


Subject(s)
Muscle Development , Muscular Dystrophy, Duchenne , Dystrophin , Humans , Induced Pluripotent Stem Cells , Male , Muscle Development/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Proteomics
7.
Nat Commun ; 10(1): 45, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604748

ABSTRACT

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Subject(s)
CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Genetic Vectors/genetics , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Animals , Cell Line, Tumor , DNA Repair/genetics , Embryo, Mammalian , Fibroblasts , Gene Editing/economics , Genome/genetics , HEK293 Cells , Hematopoietic Stem Cells , Humans , Induced Pluripotent Stem Cells , Leukemia Virus, Murine/genetics , Macrophages , Mice , Mice, Inbred C57BL , Primary Cell Culture , Transcriptional Activation/genetics
8.
J Biol Methods ; 6(4): e122, 2019.
Article in English | MEDLINE | ID: mdl-31976349

ABSTRACT

[This corrects the article on p. e55 in vol. 3, PMID: 31453218.].

9.
PLoS One ; 11(1): e0146281, 2016.
Article in English | MEDLINE | ID: mdl-26731538

ABSTRACT

Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.


Subject(s)
Cell Plasticity/drug effects , Embryonic Stem Cells/metabolism , Hypoxia/metabolism , Kruppel-Like Transcription Factors/metabolism , Matrix Metalloproteinase 1/pharmacology , Animals , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Enzyme Inhibitors/pharmacology , Kruppel-Like Transcription Factors/genetics , Leukemia Inhibitory Factor/pharmacology , Mice , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Signal Transduction/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism
10.
J Biol Methods ; 3(4): e55, 2016.
Article in English | MEDLINE | ID: mdl-31453218

ABSTRACT

Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi Consortium (TRC), which has developed libraries of short hairpin RNA (shRNA) sequences in pseudotyped lentiviral particles capable of targeting most genes in the human and mouse genomes. However, a problem is the lack of a simple method to titrate the homemade lentiviral particle product, making it difficult to optimize and standardize shRNA experiments. Here we provide a guide describing a quick, non-laborious and reliable method for the titration of TRC pseudotyped lentiviral particles that is based on the detection and measurement of viral RNA using quantitative PCR. Our data demonstrate that purified linearized shRNA plasmids represent more suitable standards than circular or unpurified linearized plasmids. We also show that for precise absolute quantification, it is important to determine suitable plasmid and viral cDNA concentrations in order to find the linear range for quantification, as well as to reduce inhibition and primer dimer amplification. Finally, we show that the lentivirus concentration impacts the level of knockdown in transduced cells. Primers utilized in this non-functional titration can potentially be applied to functional titration of proviral DNA copies or transgene expression, overcoming problems arising from the absence of fluorescent reporter genes in TRC plasmids.

11.
Skelet Muscle ; 5: 40, 2015.
Article in English | MEDLINE | ID: mdl-26568816

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. METHODS: The bone morphogenetic protein 4 (BMP4) is a critical signaling molecule involved in mesoderm commitment. Human induced pluripotent stem cells (hiPSCs) from DMD and healthy individuals and human embryonic stem cells (hESCs) treated with BMP4 allowed us to model the early steps of myogenesis in normal and DMD contexts. RESULTS: Unexpectedly, 72h following BMP4 treatment, a new long DMD transcript was detected in all tested hiPSCs and hESCs, at levels similar to that found in adult skeletal muscle. This novel transcript named "Dp412e" has a specific untranslated first exon which is conserved only in a sub-group of anthropoids including human. The corresponding novel dystrophin protein of 412-kiloDalton (kDa), characterized by an N-terminal-truncated actin-binding domain, was detected in normal BMP4-treated hiPSCs/hESCs and in embryoid bodies. Finally, using a phosphorodiamidate morpholino oligomer (PMO) targeting the DMD exon 53, we demonstrated the feasibility of exon skipping validation with this BMP4-inducible hiPSCs model. CONCLUSIONS: In this study, the use of hiPSCs to analyze early phases of human development in normal and DMD contexts has led to the discovery of an embryonic 412 kDa dystrophin isoform. Deciphering the regulation process(es) and the function(s) associated to this new isoform can contribute to a better understanding of the DMD physiopathology and potential developmental defects. Moreover, the simple and robust BMP4-inducible model highlighted here, providing large amount of a long DMD transcript and the corresponding protein in only 3 days, is already well-adapted to high-throughput and high-content screening approaches. Therefore, availability of this powerful cell platform can accelerate the development, validation and improvement of DMD genetic therapies.

12.
PeerJ ; 2: e618, 2014.
Article in English | MEDLINE | ID: mdl-25374775

ABSTRACT

Background. Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of in vitro fertilised blastocysts, which can either be maintained in an undifferentiated state or committed into lineages under determined culture conditions. These cells offer great potential for regenerative medicine, but at present, little is known about the mechanisms that regulate hESC stemness; in particular, the role of cell-cell and cell-extracellular matrix interactions remain relatively unexplored. Methods and Results. In this study we have performed an in silico analysis of cell-microenvironment interactions to identify novel proteins that may be responsible for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was assembled using a meta-analysis approach combining the analysis of microarrays and the use of databases for annotation. The STRING database was utilised to construct a protein-protein interaction network focused on extracellular and transcription factor components contained within the assembled transcriptome. This interactome was structurally studied and filtered to identify a short list of 92 candidate proteins, which may regulate hESC stemness. Conclusion. We hypothesise that this list of proteins, either connecting extracellular components with transcriptional networks, or with hub or bottleneck properties, may contain proteins likely to be involved in determining stemness.

13.
Stem Cell Rev Rep ; 8(1): 1-15, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21537995

ABSTRACT

LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.


Subject(s)
Leukemia Inhibitory Factor/physiology , Signal Transduction , Stem Cells/physiology , Animals , Gene Expression , Gene Expression Regulation , Genetic Pleiotropy , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...