Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 51(24): 9556, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35674472

ABSTRACT

Correction for 'Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications' by Romain Moury et al., Dalton Trans., 2020, 49, 12168-12173, https://doi.org/10.1039/D0DT02170A.

2.
Inorg Chem ; 61(13): 5224-5233, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35324183

ABSTRACT

In this work, we report on the structural properties of alkali hydrido-closo-(car)borates, a promising class of solid-state electrolyte materials, using high-pressure and temperature-dependent X-ray diffraction experiments combined with density functional theory (DFT) calculations. The mechanical properties are determined via pressure-dependent diffraction studies and DFT calculations; the shear moduli appear to be very low for all studied compounds, revealing their high malleability (that can be beneficial for the manufacturing and stable cycling of all-solid-state batteries). The thermodiffraction experiments also reveal a high coefficient of thermal expansion for these materials. We discover a pressure-induced phase transition for K2B12H12 from Fm3̅ to Pnnm symmetry around 2 GPa. A temperature-induced phase transition for Li2B10H10 was also observed for the first time by thermodiffraction, and the crystal structure determined by combining experimental data and DFT calculations. Interestingly, all phases of the studied compounds (including newly discovered high-pressure and high-temperature phases) may be related via a group-subgroup relationship, with the notable exception of the room-temperature phase of Li2B10H10.

3.
ACS Appl Energy Mater ; 4(4): 3737-3747, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-37153859

ABSTRACT

In the search for energy storage materials, metal octahydrotriborates, M(B3H8) n , n = 1 and 2, are promising candidates for applications such as stationary hydrogen storage and all-solid-state batteries. Therefore, we studied the thermal conversion of unsolvated Mg(B3H8)2 to BH4 - as-synthesized and in the presence of MgH2. The conversion of our unsolvated Mg(B3H8)2 starts at ∼100 °C and yields ∼22 wt % of BH4 - along with the formation of (closo-hydro)borates and volatile boranes. This loss of boron (B) is a sign of poor cyclability of the system. However, the addition of activated MgH2 to unsolvated Mg(B3H8)2 drastically increases the thermal conversion to 85-88 wt % of BH4 - while simultaneously decreasing the amounts of B-losses. Our results strongly indicate that the presence of activated MgH2 substantially decreases the formation of (closo-hydro)borates and provides the necessary H2 for the B3H8-to-BH4 conversion. This is the first report of a metal octahydrotriborate system to selectively convert to BH4 - under moderate conditions of temperature (200 °C) in less than 1 h, making the MgB3H8-MgH2 system very promising for energy storage applications.

4.
Dalton Trans ; 49(35): 12168-12173, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32845954

ABSTRACT

Mg(B3H8)2 is a crucial reaction intermediate in the thermal decomposition of the hydrogen storage material Mg(BH4)2 and is discussed as a potential solid-state Mg-ion conductor. We successfully synthesized unsolvated Mg(B3H8)2 and highlight that Mg(B3H8)2 exists mainly as a low-dimensional solid. In addition, the Mg2+ conductivity was evaluated to be 1.4.10-4 S cm-1 at 80 °C.

5.
Dalton Trans ; 49(24): 8186-8193, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32515454

ABSTRACT

In our search for novel insertion compounds for Li-based batteries, we have identified a new mixed iron vanadium based Hexagonal Tungsten Bronze (HTB) type phase. Its synthesis involves two steps which consist first of preparing mixed metal hydrated fluoride Fe1.64V1.36F8(H2O)2 by a microwave assisted thermal process, followed by thermal treatment under air to obtain metastable HTB-(Fe0.55V0.45)F2.67(OH)0.33 hydroxyfluoride. 57Fe Mössbauer spectrometry demonstrates the presence of oxidation states Fe2+ and Fe3+ in Fe1.64V1.36F8(H2O)2 as opposed to only Fe3+ in HTB-(Fe0.55V0.47)F2.67(OH)0.33. Moreover, the Mössbauer spectra recorded at 77 K reveal that none of the compounds shows magnetic ordering owing to the presence of V3+ distributed over the crystallographic sites of Fe3+. Complementary X-ray spectroscopy and Rietveld refinement further confirm the successful synthesis of HTB-(Fe0.55V0.45)F2.67(OH)0.33. Electrochemically, the new HTB-(Fe0.55V0.45)F2.67(OH)0.33 shows a first discharge capacity of 181 mA h g-1 with 67% of this capacity remaining upon cycling. Unlike HTB-FeF2.66(OH)0.34, the structure remains stable after the first discharge confirming the positive effect of vanadium in the HTB network.

6.
ChemSusChem ; 12(21): 4832-4837, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31476102

ABSTRACT

All-solid-state batteries (ASSBs) promise higher power and energy density than batteries based on liquid electrolytes. Recently, a stable 3 V ASSB based on the super ionic conductor (1 mS cm-1 near room temperature) Na4 (B12 H12 )(B10 H10 ) has demonstrated excellent cycling stability. This study concerns the development of a five-step, scalable, and solution-based synthesis of Na4 (B12 H12 )(B10 H10 ). The use of a wet chemistry approach allows solution processing with high throughput and addresses the main drawbacks for this technology, specifically, the limited electrode-electrolyte contact and high cost. Moreover, a cost-efficient synthesis of the expensive precursors Na2 B10 H10 and Na2 B12 H12 is also achieved through the same process. The mechanism of the reactions is investigated and two key parameters to tune the kinetics and selectivity are highlighted: the choice of counter cation (tetraethylammonium) and solvent.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 406-413, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32830662

ABSTRACT

closo-Borates, such as Na2B12H12, are an emerging class of ionic conductors that show promising chemical, electrochemical and mechanical properties as electrolytes in all-solid-state batteries. Motivated by theoretical predictions, high-pressure in situ powder X-ray diffraction on Na2B12H12 was performed and two high-pressure phases are discovered. The first phase transition occurs at 0.5 GPa and it is persistent to ambient pressure, whereas the second transition takes place between 5.7 and 8.1 GPa and it is fully reversible. The mechanisms of the transitions by means of group theoretical analysis are unveiled. The primary-order parameters are identified and the stability at ambient pressure of the first polymorph is explained by density functional theory calculations. Finally, the parameters relevant to engineer and build an all-solid-state battery, namely, the bulk modulus and the coefficient of the thermal expansion are reported. The relatively low value of the bulk modulus for the first polymorph (14 GPa) indicates a soft material which allows accommodation of the volume change of the cathode during cycling.

8.
Materials (Basel) ; 8(9): 5891-5921, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-28793541

ABSTRACT

This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

9.
ChemSusChem ; 6(4): 667-73, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23447516

ABSTRACT

Herein, we present the successful synthesis and full characterization (by (11) B magic-angle-spinning nuclear magnetic resonance spectroscopy, infrared spectroscopy, powder X-ray diffraction) of sodium hydrazinidoborane (NaN2 H3 BH3 , with a hydrogen content of 8.85 wt %), a new material for chemical hydrogen storage. Using lab-prepared pure hydrazine borane (N2 H4 BH3 ) and commercial sodium hydride as precursors, sodium hydrazinidoborane was synthesized by ball-milling at low temperature (-30 °C) under an argon atmosphere. Its thermal stability was assessed by thermogravimetric analysis and differential scanning calorimetry. It was found that under heating sodium hydrazinidoborane starts to liberate hydrogen below 60 °C. Within the range of 60-150 °C, the overall mass loss is as high as 7.6 wt %. Relative to the parent N2 H4 BH3 , sodium hydrazinidoborane shows improved dehydrogenation properties, further confirmed by dehydrogenation experiments under prolonged heating at constant temperatures of 80, 90, 95, 100, and 110 °C. Hence, sodium hydrazinidoborane appears to be more suitable for chemical hydrogen storage than N2 H4 BH3 .


Subject(s)
Boranes/chemistry , Hydrazines/chemistry , Hydrogen/chemistry , Calorimetry, Differential Scanning , Hot Temperature , Magnetic Resonance Spectroscopy , Sodium Compounds/chemistry , Spectrophotometry, Infrared , Thermogravimetry
10.
Phys Chem Chem Phys ; 14(5): 1768-77, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22166916

ABSTRACT

Hydrazine borane (N(2)H(4)BH(3)) is the novel boron- and nitrogen-based material appearing to be a promising candidate in chemical hydrogen storage. It stores 15.4 wt% of hydrogen in hydridic and protic forms, and the challenge is to release H(2) with maximum efficiency, if possible all hydrogen stored in the material. An important step to realize this ambitious goal is to synthesize HB with high yields and high purity, and to characterize it fully. In this work, we report a 2-step synthesis (salt metathesis and solvent extraction-drying) through which N(2)H(4)BH(3) is successfully obtained in 3 days, with a yield of about 80% and a purity of 99.6%. N(2)H(4)BH(3) was characterized by NMR, IR, XRD, TGA and DSC, its stability in dioxane and water was determined, and its thermolysis by-products were characterized. We thus present a complete data sheet that should be very useful for future studies. Furthermore, we propose a discussion on the potential of HB (with H(2) released by either thermolysis or hydrolysis) in chemical hydrogen storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...