Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(9): e30333, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707334

ABSTRACT

Based on the significance of heat transfer in tubular flows, various methods of heat transfer enhancement have been developed by scholars. The use of turbulator inserts like twisted tapes is widely discussed and suggested by researchers, and many studies have concentrated on the positive influence of these devices. However, the question is whether these devices always positively impact heat transfer and fluid flow. In this study, efforts were made to find possible adverse impacts of using twisted tapes on the average Nusselt number (Nu), friction factor (f), flow behavior, and performance evaluation criterion (PEC) of water-titania nanofluid. Three-dimensional (3D) numerical methods were used to assess a combination of three different configurations of 156 cases with/without turbulators with different numbers of blades and pitch ratios (PR). Results suggest that at Reynolds number (Re) = 4000, 6000, and 8000, only 25 %, 25 %, and 22.9 % of the examined cases led to PEC values over 1. Based on the results, while twisted tapes raised the Nu by up to 65.1 %, the f can be increased by up to more than six times. Furthermore, streamlines and velocity magnitude contours were employed to discuss the fluid flow behavior in the presence of the turbulators. According to the findings, while with the best turbulator, the PEC value was increased by only 6.3 %, some of the turbulators reduced this parameter by up to 11.8 %, which is more severe. The worst performance was observed with the Case C (three-bladed) turbulator at a PR value of 11, which reduced the PEC by 11.8 %.

2.
Nanomaterials (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35683783

ABSTRACT

Cold energy storage devices are widely used for coping with the mismatch between thermal energy production and demand. These devices can store cold thermal energy and return it when required. Besides the countless advantages of these devices, their freezing rate is sluggish, therefore researchers are continuously searching for techniques to improve their operating speed. This paper tries to address this problem by simultaneously combining a network of plate fins and various types of carbon-based nanomaterials (NMs) in a series of complex computational fluid dynamics (CFD) simulations that are validated by published experimental results. Horizontal, vertical, and the combination of these two plate-fin arrangements are tested and compared to the base model. Subsequently, several carbon-based NMs, including SWCNT, MWCNT, and graphene-oxide NMs are utilized to further improve the process. The influence of these fin networks, nanoparticle types, and their volume- and mass-based concentrations within the PCM container are studied and discussed. According to the results, carbon-based NMs exhibit superior performance compared to metal-oxide NMs, so that at identical NM volume and mass fractions, MWCNT particles present a 2.77% and 17.72% faster freezing rate than the CuO particles. The combination of plate-fin network and MWCNT particles is a promising technique that can expedite the ice formation rate by up to 70.14%.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335823

ABSTRACT

Due to the high enthalpy of fusion in water, ice storage systems are known as one of the best cold thermal energy storage systems. The phase change material used in these systems is water, thus it is inexpensive, accessible, and completely eco-friendly. However, despite the numerous advantages of these systems, the phase change process in them is time-consuming and this leads to difficulties in their practical application. To solve this problem, the addition of nanomaterials can be helpful. This study aims to investigate the compound heat transfer enhancement of a cylindrical-shaped unit equipped with double helically coiled coolant tubes using connecting plates and nano additives as heat transfer augmentation methods. Complex three-dimensional numerical simulations are carried out here to assess the best heat exchanger material as well as the impact of various nanoparticle types, including alumina, copper oxide, and titania, and their concentrations in the PCM side of the ice storage unit. The influence of these parameters is discussed on the charging rate and the temperature evolution factor in these systems. The results suggest that using nano additives, as well as the connecting plates, together is a promising way to enhance the solidification rate by up to 29.9%.

SELECTION OF CITATIONS
SEARCH DETAIL