Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38140075

ABSTRACT

The urge to implement innovative approaches that align with eco-friendly practices and hold promise for enhancing oral health while promoting environmental sustainability has been increasing. This current work aims to develop a sustainable treatment for oral traumatic ulcers using licorice-based hydrogels (LHGs) containing hydroxyethyl cellulose (HEC) as the green gelling agent. Licorice root aqueous extract was phytochemically profiled using UPLC-ESI-MS/MS. Forty-three compounds were detected, with Glycyrrhizic acid being the major component of the extract (34.85 ± 2.77%). By implementing a Quality by Design (QbD) approach, the study investigates the effects of different licorice extract and HEC concentrations on key variables such as pH and viscosity of the prepared formulations, ulcer and wound healing scores, and tissue growth factors via a Full Factorial Experimental Design. The LHGs exhibited desirable consistency, spreadability, and clarity. Statistical analysis, employing an ANOVA test, revealed the high significance of the constructed models with the licorice concentration being the key independent factor affecting all dependent outputs. The pH as well as the viscosity of the prepared LHGs were positively influenced by licorice extract concentration, with higher concentrations leading to increased alkalinity and viscosity. Rheological behavior analysis revealed a pseudoplastic flow with demonstrated thixotropy which is advantageous for application and prolongation of residence time. The wound healing process was assessed through ulcer size, traumatic ulcer healing score (UHS), collagen-1 expression (COL-1), growth factors (EGF, VEGF), pro-inflammatory markers (TNF-α), wound healing score (WHS). LHGs prepared using higher levels of both factors, 30% dried licorice root extract and 4% HEC, demonstrated enhanced wound healing, elevated growth factor expression of 66.67% and 23.24%, respectively, and 88% reduced inflammation compared to the control group, indicating their potential in expediting oral ulcer recovery. Overall, these findings highlight the promising role of green licorice-based hydrogels in promoting sustainable oral mucosal healing.

2.
Anticancer Agents Med Chem ; 19(12): 1473-1480, 2019.
Article in English | MEDLINE | ID: mdl-31244433

ABSTRACT

BACKGROUND: Various phenolic phytochemical extracts have been claimed to exhibit different types of biological activity, including anti-inflammatory, anti-oxidative and anti-carcinogenic activity. Carnosol and carnosic acid, extracts of rosemary, are among these phenolic compounds. MATERIALS AND METHODS: CHARMm-based molecular docking was performed to estimate the possible molecular interactions of both carnosic acid and carnosol with the COX-2 active binding site. An MTT assay was used to evaluate HEp-2 cell viability after incubation for 48 hours with low or high concentrations of carnosol, carnosic acid or their combination. The levels of COX-2 were measured in cell lysate by the quantitative indirect ELISA technique. RESULTS: Docking revealed favourable negative binding energies as well as binding interactions of both carnosic acid and carnosol within the binding site of the COX-2 receptor. Carnosic acid showed more favourable binding potential than carnosol. One-way ANOVA and Bonferroni's post hoc tests revealed significant differences in cytotoxicity among cells treated with different concentrations of the rosemary extracts (P< 0.001). ELISA revealed significant reductions in COX-2 protein levels in HEp-2 cells treated with either carnosic acid (-1.42- fold) or carnosol (-3.16-fold) compared to control cells. CONCLUSION: Both rosemary extracts, carnosol and carnosic acid, exert potential cytotoxic effects on the HEp-2 cell line via inhibition of the COX-2 pathway. The combination of carnosol and carnosic acid exerts a stronger cytotoxic effect than either compound alone.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Head and Neck Neoplasms/drug therapy , Phytochemicals/pharmacology , Rosmarinus/chemistry , Squamous Cell Carcinoma of Head and Neck/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Hep G2 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...