Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38835106

ABSTRACT

This study evaluated the presence of the three pesticides methomyl (MET), carbendazim (CBZ) and chlorpyrifos-ethyl (CPE), as well as the degradation product of CPE (3,5,6-trichloro-2-pyridinol; TCP), in 44 honey samples from all 12 regions of Morocco. With a validated HPLC-UV method occurrence frequencies of 63.6% for MET, 54.5% for CBZ, 95.1% for CPE and 34.1% for TCP were obtained, even at concentrations higher than the maximum residue limits for MET, CPE and TCP. Based on the predominant pesticide, principal component analysis separated sampling regions into three groups. Risk assessment indicated that ingestion of these pesticides, alone or in combination, in honey did not pose a risk to consumers (HQ and HI < 1).

2.
Pak J Pharm Sci ; 37(2): 257-263, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767092

ABSTRACT

The objective of this study was to identify the major compounds present in Cedar tar obtained by distillation of Cedrus atlantica wood from the Taza forest (Morocco) and to evaluate its antidermatophytic activity in vitro against the three strains of dermatophytes most widespread in Morocco, considered the main prevailing causes of fungal infections of the skin, hair and nails. GC/MS analysis revealed that cedar tar is composed mainly of hydrocarbon sesquiterpenes and oxygenated sesquiterpenes, with nine major compounds identified, including α-Cedrene, ß-Cadinene, γ-Cadinene, ß-Himachelene, α-Turmerone, ß-Turmerone, Ar-tumerone, α-Atlantone and Himachalol. The evaluation of antifungal activity was carried out by the micro dilution technique. The MIC values found were 100µg/mL, 2µg/mL and 0.1µg/mL on Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis strains respectively. The observed strong antifungal activity of cedar tar is attributed to the prevalence of oxygenated and hydrocarbon sesquiterpenes, known for their established antidermatophytic properties. This study highlights the potential of the Atlas Cedar tar as an effective antifungal agent for the treatment of superficial mycoses, particularly dermatophytoses.


Subject(s)
Antifungal Agents , Arthrodermataceae , Cedrus , Microbial Sensitivity Tests , Microsporum , Microsporum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Arthrodermataceae/drug effects , Cedrus/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gas Chromatography-Mass Spectrometry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/analysis , Phytochemicals/chemistry , Morocco
3.
J Environ Sci Health B ; 56(7): 613-622, 2021.
Article in English | MEDLINE | ID: mdl-33999754

ABSTRACT

This study aims to encapsulate the fungicide carbendazim using a biodegradable polymer (pectin). First, we have obtained calcium pectinate beads (CPG-Carb) by ionotropic gelation using calcium ions as a crosslinking agent. These beads were then coated with silica starting from tetraethoxysilane (TEOS), by a sol-gel process to form hybrid beads (CPG-Carb-SG). The morphology, composition and structure of both beads were characterized and the controlled release assays of the fungicide were studied in both water and soil columns. The encapsulation efficiency for CPG-Carb was slightly higher (75%) compared to CPG-Carb-SG (67%) due to carbendazim loss during the impregnation and condensation steps. The release rate in water and soil columns was about 4 times lower for CPG-Carb-SG than CPG-Carb demonstrating the efficiency of the silica coating to delay the release of carbendazim. Moreover, the release of CPG-Carb-SG is due to the erosion of the silica layer during the first two weeks. After this period, the silica layer was degraded, and the release is then controlled by the swelling of the organic part of the bead as observed for CPG-Carb. Finally, the biodegradability of the pectin, and the release profile make such systems promising candidates for sustained and economical pesticide delivery systems.


Subject(s)
Pectins , Silicon Dioxide , Benzimidazoles , Carbamates , Soil , Water
4.
Bioinformation ; 16(8): 611-619, 2020.
Article in English | MEDLINE | ID: mdl-33214749

ABSTRACT

It is of interest to study the binding capacity of "3-[2-(2-Amino-1H-benzo[d]imidazol-1-yl)ethyl]-1,3-oxazolidin-2-one" (OXB2) with the active site of gamma-aminobutyric acid (GABA) located in the GABA type A receptor (GABAAR) in comparison with different GABAA subtypes. Optimal binding features were observed with the α2ß2γ2 isoform (-8 kcal/mol). This is similar (-7.3 and -7.2 kcal/mol, respectively) for subtypes (α3ß2γ2 and α1ß2γ2). This implies that OXB2 binds preferentially to subtypes associated with anxiety (α2- and/or α3-containing receptors) linked molecules than with the subtype associated with sedation (α1-containing receptors). It is further noted that molecular dynamics simulation data of the complex (OXB2-GABAAR) shows adequate structural stability in aqueous environment. Moreover, relevant ADMET data is found adequate for further consideration.

5.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 370-376, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148878

ABSTRACT

In the title mol-ecule, C12H13N3O2S, the benzo-thia-zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O-HHydethy⋯NThz hydrogen bonds and weak C-HImdz⋯OImdz and C-HBnz⋯OImdz (Hydethy = hy-droxy-ethyl, Thz = thia-zole, Imdz = imidazolidine and Bnz = benzene) inter-actions, together with C-HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter-actions between thia-zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that in the crystal, C-H⋯N and C-H⋯O hydrogen-bond energies are 68.5 (for O-HHydethy⋯NThz), 60.1 (for C-HBnz⋯OImdz) and 41.8 kJ mol-1 (for C-HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state.

6.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 3): 372-377, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867952

ABSTRACT

The title compound, C18H12FNOS, is built up from a 4-fluoro-benzyl-idene moiety and a di-hydro-benzo-thia-zine unit with a propynyl substituent, with the heterocyclic portion of the di-hydro-benzo-thia-zine unit adopting a shallow boat conformation with the propynyl substituent nearly perpendicular to it. The two benzene rings are oriented at a dihedral angle of 43.02 (6)°. In the crystal, C-HFlurphen⋯FFlurphen (Flurphen = fluoro-phen-yl) hydrogen bonds link the mol-ecules into inversion dimers, enclosing R 2 2(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (33.9%), H⋯C/C⋯H (26.7%), H⋯F/F⋯H (10.9%) and C⋯C (10.6%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

7.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 2): o396, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22347018

ABSTRACT

The title compound, C(16)H(10)N(2)S, is almost planar (r.m.s. deviation for all non-H atoms = 0.080 Å). The dihedral angle between the three fused-ring system and the phenyl ring is 9.26 (3)°. The S atom and the opposite C atom of the thio-phene ring are mutually disordered with an occupancy ratio of 0.7706 (19):0.2294 (19).

8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 6): o1374, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21754764

ABSTRACT

In the crystal structure of the title compound, C(22)H(18)N(4)O, the quinoxaline system makes dihedral angles of 86.59 (7) and 63.37 (9)° with the benzohydrazide and phenyl rings, respectively. The benzohydrazide ring makes a dihedral angle of 72.46 (10)° with the phenyl ring. The crystal structure is stabilized by inter-molecular N-H⋯O hydrogen bonds, C-H⋯O contacts and C-H⋯π inter-actions.

9.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 8): o1905, 2010 Jul 03.
Article in English | MEDLINE | ID: mdl-21588238

ABSTRACT

In the title compound, C(18)H(15)N(3)O(2), the dihedral angle between the ring systems is 15.1 (1)°. The amino H atom is hydrogen bonded to the exocyclic O atom of the five-membered ring, forming an S(6) motif.

10.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 8): o1922, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-21588252

ABSTRACT

The asymmetric unit of the title compound, C(16)H(14)N(2)O, contains three independent mol-ecules. The dihedral angles between the quinoxaline and phenyl planes in the three mol-ecules are 82.58 (8), 85.66 (9) and 85.36 (9)°. The crystal packing is stabilized by C-H⋯O and C-H⋯N hydrogen bonds.

11.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 12): o3137, 2010 Nov 13.
Article in English | MEDLINE | ID: mdl-21589438

ABSTRACT

In the title compound, C(12)H(13)N(3)O(2)S, the oxazolidin ring displays an envelope conformation. The dihedral angle between the benzimidazole ring and the 1,3-oxazolidin-2-one mean plane is 69.85 (13)°. In the crystal, mol-ecules are linked by inter-molecular N-H⋯N hydrogen bonds, forming a chain parallel to the b axis.

12.
Chem Commun (Camb) ; (10): 1058-9, 2002 May 21.
Article in English | MEDLINE | ID: mdl-12122663

ABSTRACT

Two solid catalysts in which a chiral copper(II) bisoxazoline has been covalently anchored on silica and MCM-41 have been prepared; the solids are enantioselective catalysts (up to 92% ee) for the Friedel-Crafts hydroxyalkylation of 1,3-dimethoxybenzene with 3,3,3-trifluoropyruvate.

SELECTION OF CITATIONS
SEARCH DETAIL
...