Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Syst ; 10(4): 333-350.e14, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32325033

ABSTRACT

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.


Subject(s)
Brain Mapping/methods , Brain/metabolism , Connectome/methods , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/genetics , Machine Learning , Mammals/physiology , Mass Spectrometry/methods , Mice , Mutation/genetics
3.
Cell Chem Biol ; 25(8): 1017-1030.e9, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30126533

ABSTRACT

Acyldepsipeptides (ADEPs) are potential antibiotics that dysregulate the activity of the highly conserved tetradecameric bacterial ClpP protease, leading to bacterial cell death. Here, we identified ADEP analogs that are potent dysregulators of the human mitochondrial ClpP (HsClpP). These ADEPs interact tightly with HsClpP, causing the protease to non-specifically degrade model substrates. Dysregulation of HsClpP activity by ADEP was found to induce cytotoxic effects via activation of the intrinsic, caspase-dependent apoptosis. ADEP-HsClpP co-crystal structure was solved for one of the analogs revealing a highly complementary binding interface formed by two HsClpP neighboring subunits but, unexpectedly, with HsClpP in the compact conformation. Given that HsClpP is highly expressed in multiple cancers and has important roles in cell metastasis, our findings suggest a therapeutic potential for ADEPs in cancer treatment.


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Apoptosis/drug effects , Depsipeptides/adverse effects , Depsipeptides/chemistry , Endopeptidase Clp/metabolism , Mitochondria/drug effects , Acylation , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Cell Line, Tumor , Depsipeptides/pharmacology , Endopeptidase Clp/chemistry , HEK293 Cells , Humans , Mitochondria/enzymology , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...